REFERENCES

1. Falavigna A, Dozza DC, Teles AR, et al. Current status of worldwide use of patient-reported outcome measures (PROMs) in spine care. World Neurosurg. 2017;108:328-35.

2. Finkelstein JA, Schwartz CE. Patient-reported outcomes in spine surgery: past, current, and future directions. J Neurosurg Spine. 2019;31:155-64.

3. Lapin B, Li Y, Davin S, et al. Comparison of stratification techniques for optimal management of patients with chronic low back pain in spine clinics. Spine J. 2023;23:1334-44.

4. Lee TJ, Thomas AA, Grandhi NR, et al. Cost-effectiveness applications of patient-reported outcome measures (PROMs) in spine surgery. Clin Spine Surg. 2020;33:140-5.

5. Pronk Y, Pilot P, Brinkman JM, van Heerwaarden RJ, van der Weegen W. Response rate and costs for automated patient-reported outcomes collection alone compared to combined automated and manual collection. J Patient Rep Outcomes. 2019;3:31.

6. Beighley A, Zhang A, Huang B, et al. Patient-reported outcome measures in spine surgery: a systematic review. J Craniovertebr Junction Spine. 2022;13:378-89.

7. Guzman JZ, Cutler HS, Connolly J, et al. Patient-reported outcome instruments in spine surgery. Spine. 2016;41:429-37.

8. Ravishankar P, Winkleman R, Rabah N, Steinmetz M, Mroz T. Analysis of patient-reported outcomes measures used in lumbar fusion surgery research for degenerative spondylolisthesis. Clin Spine Surg. 2022;35:287-94.

9. Teles AR, Khoshhal KI, Falavigna A. Why and how should we measure outcomes in spine surgery? J Taibah Univ Med Sci. 2016;11:91-7.

10. Wellington IJ, Karsmarski OP, Murphy KV, Shuman ME, Ng MK, Antonacci CL. The use of machine learning for predicting candidates for outpatient spine surgery: a review. J Spine Surg. 2023;9:323-30.

11. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

12. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024;385:e078378.

13. Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1-73.

14. Staartjes VE, Stumpo V, Ricciardi L, et al. FUSE-ML: development and external validation of a clinical prediction model for mid-term outcomes after lumbar spinal fusion for degenerative disease. Eur Spine J. 2022;31:2629-38.

15. Jaja BNR, Witiw CD, Harrington EM, et al. Analysis of recovery trajectories in degenerative cervical myelopathy to facilitate improved patient counseling and individualized treatment recommendations. J Neurosurg Spine. 2023;38:644-52.

16. Sundaramoorthy K, Al Ansari MS, Koteswari S, Kumari M. Artificial intelligence and machine learning-driven decision-making in spinal disease treatment. J Theor Appl Inf Technol. 2023;101:8388-406. http://www.jatit.org/volumes/Vol101No24/38Vol101No24.pdf. (accessed 2025-02-13)

17. Wirries A, Geiger F, Hammad A, et al. AI prediction of neuropathic pain after lumbar disc herniation-machine learning reveals influencing factors. Biomedicines. 2022;10:1319.

18. Staub LP, Aghayev E, Skrivankova V, Lord SJ, Haschtmann D, Mannion AF. Development and temporal validation of a prognostic model for 1-year clinical outcome after decompression surgery for lumbar disc herniation. Eur Spine J. 2020;29:1742-51.

19. Ford JJ, Kaddour O, Page P, Richards MC, McMeeken JM, Hahne AJ. A multivariate prognostic model for pain and activity limitation in people undergoing lumbar discectomy. Br J Neurosurg. 2020;34:381-7.

20. Rundell SD, Pennings JS, Nian H, et al. Adding 3-month patient data improves prognostic models of 12-month disability, pain, and satisfaction after specific lumbar spine surgical procedures: development and validation of a prediction model. Spine J. 2020;20:600-13.

21. Debnath UK, Scammell BE, Freeman BJC, McConnell JR. Predictive factors for the outcome of surgical treatment of lumbar spondylolysis in young sporting individuals. Global Spine J. 2018;8:121-8.

22. Çorbacıoğlu ŞK, Aksel G. Receiver operating characteristic curve analysis in diagnostic accuracy studies: a guide to interpreting the area under the curve value. Turk J Emerg Med. 2023;23:195-8.

23. Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L. Interpretability of machine learning-based prediction models in healthcare. WIREs Data Min Knowl Discov. 2020;10:e1379.

24. Berg B, Gorosito MA, Fjeld O, et al. Machine learning models for predicting disability and pain following lumbar disc herniation surgery. JAMA Netw Open. 2024;7:e2355024.

25. Berjano P, Langella F, Ventriglia L, et al. The influence of baseline clinical status and surgical strategy on early good to excellent result in spinal lumbar arthrodesis: a machine learning approach. J Pers Med. 2021;11:1377.

26. Ogink PT, Groot OQ, Karhade AV, et al. Wide range of applications for machine-learning prediction models in orthopedic surgical outcome: a systematic review. Acta Orthop. 2021;92:526-31.

27. Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14:40.

28. Polzer C, Yilmaz E, Meyer C, et al. AI-based automated detection and stability analysis of traumatic vertebral body fractures on computed tomography. Eur J Radiol. 2024;173:111364.

29. Carreon LY, Nian H, Archer KR, Andersen MØ, Hansen KH, Glassman SD. Performance of the streamlined quality outcomes database web-based calculator: internal and external validation. Spine J. 2024;24:662-9.

30. Pedersen CF, Andersen MØ, Carreon LY, Skov ST, Doering P, Eiskjær S. PROPOSE. Development and validation of a prediction model for shared decision making for patients with lumbar spinal stenosis. N Am Spine Soc J. 2024;17:100309.

31. Halicka M, Wilby M, Duarte R, Brown C. Predicting patient-reported outcomes following lumbar spine surgery: development and external validation of multivariable prediction models. BMC Musculoskelet Disord. 2023;24:333.

32. Matsukura Y, Egawa S, Inose H, et al. Preoperative symptom duration influences neurological recovery and patient-reported outcome measures after surgical treatment of cervical ossification of the posterior longitudinal ligament. Spine. 2023;48:1259-65.

33. Rushton AB, Jadhakhan F, Verra ML, et al. Predictors of poor outcome following lumbar spinal fusion surgery: a prospective observational study to derive two clinical prediction rules using British Spine Registry data. Eur Spine J. 2023;32:2303-18.

34. Geere JH, Hunter PR, Swamy GN, Cook AJ, Rai AS. Development and temporal validation of clinical prediction models for 1-year disability and pain after lumbar decompressive surgery. The Norwich Lumbar Surgery Predictor (development version). Eur Spine J. 2023;32:4210-9.

35. Zhang JK, Jayasekera D, Javeed S, et al. Diffusion basis spectrum imaging predicts long-term clinical outcomes following surgery in cervical spondylotic myelopathy. Spine J. 2023;23:504-12.

36. Chen X, Lin F, Xu X, Chen C, Wang R. Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation. Front Surg. 2023;10:1024302.

37. Dong S, Zhu Y, Yang H, et al. Evaluation of the predictors for unfavorable clinical outcomes of degenerative lumbar spondylolisthesis after lumbar interbody fusion using machine learning. Front Public Health. 2022;10:835938.

38. Pedersen CF, Andersen MØ, Carreon LY, Eiskjær S. Applied machine learning for spine surgeons: predicting outcome for patients undergoing treatment for lumbar disc herniation using PRO data. Global Spine J. 2022;12:866-76.

39. Coric D, Zigler J, Derman P, Braxton E, Situ A, Patel L. Predictors of long-term clinical outcomes in adult patients after lumbar total disc replacement: development and validation of a prediction model. J Neurosurg Spine. 2022;36:399-407.

40. Purohit G, Choudhary M, Sinha VD. Use of artificial intelligence for the development of predictive model to help in decision-making for patients with degenerative lumbar spine disease. Asian J Neurosurg. 2022;17:274-9.

41. Khan O, Badhiwala JH, Akbar MA, Fehlings MG. Prediction of worse functional status after surgery for degenerative cervical myelopathy: a machine learning approach. Neurosurgery. 2021;88:584-91.

42. Budiono GR, McCaffrey MH, Parr WCH, et al. Development of a multivariate prediction model for successful oswestry disability index changes in L5/S1 anterior lumbar interbody fusion for degenerative disc disease. World Neurosurg. 2021;148:e1-9.

43. Werner DAT, Grotle M, Småstuen MC, et al. A prognostic model for failure and worsening after lumbar microdiscectomy: a multicenter study from the Norwegian Registry for Spine Surgery. Acta Neurochir. 2021;163:2567-80.

44. Pilato F, Calandrelli R, Distefano M, Tamburrelli FC. Multidimensional assessment of cervical spondylotic myelopathy patients. Usefulness of a comprehensive score system. Neurol Sci. 2021;42:1507-14.

45. Karhade AV, Fogel HA, Cha TD, et al. Development of prediction models for clinically meaningful improvement in PROMIS scores after lumbar decompression. Spine J. 2021;21:397-404.

46. Zhang MZ, Ou-Yang HQ, Jiang L, et al. Optimal machine learning methods for radiomic prediction models: clinical application for preoperative T2*-weighted images of cervical spondylotic myelopathy. JOR Spine. 2021;4:e1178.

47. Quddusi A, Eversdijk HAJ, Klukowska AM, et al. External validation of a prediction model for pain and functional outcome after elective lumbar spinal fusion. Eur Spine J. 2020;29:374-83.

48. Siccoli A, de Wispelaere MP, Schröder ML, Staartjes VE. Machine learning-based preoperative predictive analytics for lumbar spinal stenosis. Neurosurg Focus. 2019;46:E5.

49. Merali ZG, Witiw CD, Badhiwala JH, Wilson JR, Fehlings MG. Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLoS One. 2019;14:e0215133.

50. Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML. Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling. Spine J. 2019;19:853-61.

51. De la Garza Ramos R, Nouri A, Nakhla J, et al. Predictors of return to normal neurological function after surgery for moderate and severe degenerative cervical myelopathy: an analysis of a global AOSpine cohort of patients. Neurosurgery. 2019;85:E917-23.

52. Rubery PT, Houck J, Mesfin A, Molinari R, Papuga MO. Preoperative patient reported outcomes measurement information system scores assist in predicting early postoperative success in lumbar discectomy. Spine. 2019;44:325-33.

53. Nouri A, Tetreault L, Côté P, Zamorano JJ, Dalzell K, Fehlings MG. Does magnetic resonance imaging improve the predictive performance of a validated clinical prediction rule developed to evaluate surgical outcome in patients with degenerative cervical myelopathy? Spine. 2015;40:1092-100.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/