REFERENCES
1. Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28:1889-905.
2. Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernuš F. A review of methods for evaluating the quantitative parameters of sagittal pelvic alignment. Spine J. 2012;12:433-46.
3. Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99-103.
4. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal deformity. Spine. 2005;30:2024-9.
5. Maillot C, Ferrero E, Fort D, Heyberger C, Le Huec JC. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops®. Eur Spine J. 2015;24:1574-81.
6. Lafage R, Ferrero E, Henry JK, et al. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 2015;15:2493-502.
7. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.
8. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-48.
9. Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR Spine. 2019;2:e1044.
11. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29:102-27.
12. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1:e271-97.
13. Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2020;49:183-97.
14. Jamaludin A, Lootus M, Kadir T, et al; Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J. 2017;26:1374-83.
15. Lopez CD, Boddapati V, Lombardi JM, et al. Artificial learning and machine learning applications in spine surgery: a systematic review. Global Spine J. 2022;12:1561-72.
16. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.
17. Cabitza F, Campagner A. The IJMEDI checklist for assessment of medical AI. Int J Med Inform. 2021;153.
18. Chae DS, Nguyen TP, Park SJ, Kang KY, Won C, Yoon J. Decentralized convolutional neural network for evaluating spinal deformity with spinopelvic parameters. Comput Methods Programs Biomed. 2020;197:105699.
19. Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med Image Anal. 2018;48:1-11.
20. Wang L, Xu Q, Leung S, Chung J, Chen B, Li S. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med Image Anal. 2019;58:101542.
21. Zhang K, Xu N, Guo C, Wu J. MPF-net: an effective framework for automated cobb angle estimation. Med Image Anal. 2022;75:102277.
22. Zerouali M, Parpaleix A, Benbakoura M, Rigault C, Champsaur P, Guenoun D. Automatic deep learning-based assessment of spinopelvic coronal and sagittal alignment. Diagn Interv Imaging. 2023;104:343-50.
23. Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray images: performance evaluation. Eur Spine J. 2020;29:2295-305.
24. Kim YT, Jeong TS, Kim YJ, Kim WS, Kim KG, Yee GT. Automatic spine segmentation and parameter measurement for radiological analysis of whole-spine lateral radiographs using deep learning and computer vision. J Digit Imaging. 2023;36:1447-59.
25. Yeh YC, Weng CH, Huang YJ, Fu CJ, Tsai TT, Yeh CY. Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. Sci Rep. 2021;11:7618.
26. Orosz LD, Bhatt FR, Jazini E, et al. Novel artificial intelligence algorithm: an accurate and independent measure of spinopelvic parameters. J Neurosurg Spine. 2022;37:893-901.
27. Gami P, Qiu K, Kannappan S, et al. Semiautomated intraoperative measurement of Cobb angle and coronal C7 plumb line using deep learning and computer vision for scoliosis correction: a feasibility study. J Neurosurg Spine. 2022;37:713-21.
28. Schwartz JT, Cho BH, Tang P, et al. Deep learning automates measurement of spinopelvic parameters on lateral lumbar radiographs. Spine. 2021;46:E671-8.
29. Aubert B, Vazquez C, Cresson T, Parent S, de Guise JA. Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting. IEEE Trans Med Imaging. 2019;38:2796-806.
30. Nguyen TP, Jung JW, Yoo YJ, Choi SH, Yoon J. Intelligent evaluation of global spinal alignment by a decentralized convolutional neural network. J Digit Imaging. 2022;35:213-25.
31. Galbusera F, Niemeyer F, Wilke HJ, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J. 2019;28:951-60.
32. Zhang T, Zhu C, Lu Q, Liu J, Diwan A, Cheung JPY. A novel tool to provide predictable alignment data irrespective of source and image quality acquired on mobile phones: what engineers can offer clinicians. Eur Spine J. 2020;29:387-95.
33. Horng MH, Kuok CP, Fu MJ, Lin CJ, Sun YN. Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput Math Methods Med. 2019;2019:6357171.
34. Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal Cobb angles by structured multi-output regression. In: Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P, Shen D, editors. Information processing in medical imaging. Cham: Springer International Publishing; 2017. pp. 529-40.
35. Weng CH, Wang CL, Huang YJ, et al. Artificial intelligence for automatic measurement of sagittal vertical axis using ResUNet framework. J Clin Med. 2019;8:1826.
36. H A, Prabhu GK. Automatic quantification of spinal curvature in scoliotic radiograph using image processing. J Med Syst. 2012;36:1943-51.
37. Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y. Automatic Cobb measurement of scoliosis based on fuzzy Hough Transform with vertebral shape prior. J Digit Imaging. 2009;22:463-72.
38. Sounderajah V, Ashrafian H, Golub RM, et al; STARD-AI Steering Committee. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709.
39. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health. 2020;2:e537-48.
40. Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2:e200029.
41. Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical imaging data for machine learning. Radiology. 2020;295:4-15.
42. Ghaednia H, Lans A, Sauder N, et al. Deep learning in spine surgery. Semin Spine Surg. 2021;33:100876.
43. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:195.
44. Cho BH, Kaji D, Cheung ZB, et al. Automated measurement of lumbar lordosis on radiographs using machine learning and computer vision. Global Spine J. 2020;10:611-8.
45. Burns JE, Yao J, Chalhoub D, Chen JJ, Summers RM. A machine learning algorithm to estimate sarcopenia on abdominal CT. Acad Radiol. 2020;27:311-20.
46. Yang J, Zhang K, Fan H, et al. Development and validation of deep learning algorithms for scoliosis screening using back images. Commun Biol. 2019;2:390.
47. Hu B, Kim C, Ning X, Xu X. Using a deep learning network to recognise low back pain in static standing. Ergonomics. 2018;61:1374-81.
48. Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML. Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling. Spine J. 2019;19:853-61.
49. Hines AL, Barrett ML, Jiang HJ, Steiner CA. Conditions with the largest number of adult hospital readmissions by payer, 2011. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs.
50. Valenzuela JG, Cirillo Totera JI, Turkieltaub DH, Echaurren CV, Álvarez Lemos FL, Arriagada Ramos FI. Spino-pelvic radiological parameters: comparison of measurements obtained by radiologists using the traditional method versus spine surgeons using a semi-automated software (Surgimap). Acta Radiol Open. 2023;12:20584601231177404.