REFERENCES
1. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2023;14:8459-86.
2. Shen J, Zhang CJP, Jiang B, et al. Artificial intelligence versus clinicians in disease diagnosis: systematic review. JMIR Med Inform. 2019;7:e10010.
3. Chang MC, Kim JK, Park D, Kim JH, Kim CR, Choo YJ. The use of artificial intelligence to predict the prognosis of patients undergoing central nervous system rehabilitation: a narrative review. Healthcare. 2023;11:2687.
4. Poalelungi DG, Musat CL, Fulga A, et al. Advancing patient care: how artificial intelligence is transforming healthcare. J Pers Med. 2023;13:1214.
5. Reddy S. Generative AI in healthcare: an implementation science informed translational path on application, integration and governance. Implement Sci. 2024;19:27.
6. Ball HC. Improving healthcare cost, quality, and access through artificial intelligence and machine learning applications. J Healthc Manag. 2021;66:271-9.
7. Rubinger L, Gazendam A, Ekhtiari S, Bhandari M. Machine learning and artificial intelligence in research and healthcare. Injury. 2023;54 Suppl 3:S69-73.
8. Zhao R, Xie Z, Zhuang Y, Yu PLH. Automated quality evaluation of large-scale benchmark datasets for vision-language tasks. Int J Neural Syst. 2024;34:2450009.
9. Rahmani AM, Azhir E, Ali S, et al. Artificial intelligence approaches and mechanisms for big data analytics: a systematic study. PeerJ Comput Sci. 2021;7:e488.
10. Nayarisseri A, Khandelwal R, Tanwar P, et al. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr Drug Targets. 2021;22:631-55.
11. Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical decision-making. JAMA Surg. 2020;155:148-58.
12. Kim HJ, Yang JH, Chang DG, et al. Adult spinal deformity: current concepts and decision-making strategies for management. Asian Spine J. 2020;14:886-97.
13. Kim HJ, Yang JH, Chang DG, et al. Adult spinal deformity: a comprehensive review of current advances and future directions. Asian Spine J. 2022;16:776-88.
14. Patel RV, Yearley AG, Isaac H, Chalif EJ, Chalif JI, Zaidi HA. Advances and evolving challenges in spinal deformity surgery. J Clin Med. 2023;12:6386.
15. Ailon T, Scheer JK, Lafage V, et al; International Spine Study Group. Adult spinal deformity surgeons are unable to accurately predict postoperative spinal alignment using clinical judgment alone. Spine Deform. 2016;4:323-9.
16. Zhou S, Zhou F, Sun Y, et al. The application of artificial intelligence in spine surgery. Front Surg. 2022;9:885599.
17. Benzakour A, Altsitzioglou P, Lemée JM, Ahmad A, Mavrogenis AF, Benzakour T. Artificial intelligence in spine surgery. Int Orthop. 2023;47:457-65.
18. Yagi M, Yamanouchi K, Fujita N, Funao H, Ebata S. Revolutionizing spinal care: current applications and future directions of artificial intelligence and machine learning. J Clin Med. 2023;12:4188.
19. Wirries A, Geiger F, Oberkircher L, Jabari S. An evolution gaining momentum - the growing role of artificial intelligence in the diagnosis and treatment of spinal diseases. Diagnostics. 2022;12:836.
20. Cui Y, Zhu J, Duan Z, Liao Z, Wang S, Liu W. Artificial intelligence in spinal imaging: current status and future directions. Int J Environ Res Public Health. 2022;19:11708.
21. Galbusera F, Niemeyer F, Wilke HJ, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J. 2019;28:951-60.
22. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C. Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal. 2009;13:471-82.
23. Löchel J, Putzier M, Dreischarf M, et al. Deep learning algorithm for fully automated measurement of sagittal balance in adult spinal deformity. Eur Spine J. 2024;33:4119-24.
24. Ghesu FC, Georgescu B, Mansi T, Neumann D, Hornegger J, Comaniciu D. An artificial agent for anatomical landmark detection in medical images. In: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. Springer, Cham; 2016. pp. 229-37.
25. Michael Kelm B, Wels M, Kevin Zhou S, et al. Spine detection in CT and MR using iterated marginal space learning. Med Image Anal. 2013;17:1283-92.
26. Jamaludin A, Kadir T, Zisserman A. SpineNet: automated classification and evidence visualization in spinal MRIs. Med Image Anal. 2017;41:63-73.
27. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM. 2020;63:139-44.
28. Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging. 2018;37:491-503.
29. Souza R, Lebel RM, Frayne R. A hybrid, dual domain, cascade of convolutional neural networks for magnetic resonance image reconstruction. PMLR. 2019;102:437-46. Available from: https://proceedings.mlr.press/v102/souza19a.html. [Last accessed on 6 Mar 2025]
30. Xuan J, Ke B, Ma W, Liang Y, Hu W. Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods. Front Public Health. 2023;11:1044525.
31. Sri Lalitha Y, Ganapathi Raju NV, Vanimireddy RT, et al. Conversational AI Chatbot for HealthCare. E3S Web Conf. 2023;391:01114.
32. Nimal KA, Nair VV, Jegdeep R, Nehru JA. Artificial intelligence based Chatbot for healthcare applications. Adv Sci Technol. 2023;124:370-7.
33. Bian Y, Xiang Y, Tong B, Feng B, Weng X. Artificial intelligence-assisted system in postoperative follow-up of orthopedic patients: exploratory quantitative and qualitative study. J Med Internet Res. 2020;22:e16896.
34. Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM. Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res. 2010;174:83-90.
35. Gebhard FT, Kraus MD, Schneider E, Liener UC, Kinzl L, Arand M. Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine. 2006;31:2024-7; discussion 2028.
36. Abul-Kasim K. Low-dose spine CT: optimisation and clinical implementation. Radiat Prot Dosimetry. 2010;139:169-72.
37. Wu W, Niu C, Ebrahimian S, Yu H, Kalra MK, Wang G. AI-enabled ultra-low-dose CT reconstruction. ArXiv 2021, arXiv:2106.09834. Available from: https://doi.org/10.48550/arXiv.2106.09834. [Last accessed on 6 Mar 2025]
38. Yang Q, Yan P, Zhang Y, et al. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging. 2018;37:1348-57.
39. Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36:2524-35.
40. Kim JS, Merrill RK, Arvind V, et al. Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine. 2018;43:853-60.
41. Kuris EO, Veeramani A, McDonald CL, et al. Predicting readmission after anterior, posterior, and posterior interbody lumbar spinal fusion: a neural network machine learning approach. World Neurosurg. 2021;151:e19-27.
42. Hopkins BS, Yamaguchi JT, Garcia R, et al. Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients. J Neurosurg Spine. 2020;32:399-406.
43. Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine. 2019;44:915-26.
44. Durand WM, Lafage R, Hamilton DK, et al; International Spine Study Group (ISSG). Artificial intelligence clustering of adult spinal deformity sagittal plane morphology predicts surgical characteristics, alignment, and outcomes. Eur Spine J. 2021;30:2157-66.
46. Ballantyne GH, Moll F. The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin North Am. 2003;83:1293-304, vii.
47. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg. 2013;398:501-14.
48. Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine. 2007;32:E56-64.
49. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine. 2007;32:E111-20.
50. Kim HJ, Jung WI, Chang BS, Lee CK, Kang KT, Yeom JS. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot. 2017;13:e1779.
51. Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016;25:947-55.
52. Kim HJ, Kang KT, Chun HJ, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot. 2018;14:e1917.
53. D’Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg. 2019;6:9-23.
54. Ponce BA, Jennings JK, Clay TB, May MB, Huisingh C, Sheppard ED. Telementoring: use of augmented reality in orthopaedic education: AAOS exhibit selection. J Bone Joint Surg Am. 2014;96:e84.
55. Bissonnette V, Mirchi N, Ledwos N, Alsidieri G, Winkler-Schwartz A, Del Maestro RF; Neurosurgical Simulation & Artificial Intelligence Learning Centre. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J Bone Joint Surg Am. 2019;101:e127.
56. Lohre R, Bois AJ, Athwal GS, Goel DP; Canadian Shoulder and Elbow Society (CSES). Improved complex skill acquisition by immersive virtual reality training: a randomized controlled trial. J Bone Joint Surg Am. 2020;102:e26.
57. Abe Y, Sato S, Kato K, et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine. 2013;19:492-501.
58. Burström G, Nachabe R, Persson O, Edström E, Elmi Terander A. Augmented and virtual reality instrument tracking for minimally invasive spine surgery: a feasibility and accuracy study. Spine. 2019;44:1097-104.
59. Elmi-Terander A, Burström G, Nachabe R, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: a first in-human prospective cohort study. Spine. 2019;44:517-25.
60. Elmi-Terander A, Burström G, Nachabé R, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy. Sci Rep. 2020;10:707.
61. Raman T, Vasquez-Montes D, Varlotta C, Passias PG, Errico TJ. Decision tree-based modelling for identification of predictors of blood loss and transfusion requirement after adult spinal deformity surgery. Int J Spine Surg. 2020;14:87-95.
62. Durand WM, DePasse JM, Daniels AH. Predictive modeling for blood transfusion after adult spinal deformity surgery: a tree-based machine learning approach. Spine. 2018;43:1058-66.
63. De la Garza Ramos R, Hamad MK, Ryvlin J, et al. An artificial neural network model for the prediction of perioperative blood transfusion in adult spinal deformity surgery. J Clin Med. 2022;11:4436.
64. Nault ML, Beauséjour M, Roy-Beaudry M, et al. A predictive model of progression for adolescent idiopathic scoliosis based on 3D spine parameters at first visit. Spine. 2020;45:605-11.
65. Wang H, Zhang T, Cheung KM, Shea GK. Application of deep learning upon spinal radiographs to predict progression in adolescent idiopathic scoliosis at first clinic visit. EClinicalMedicine. 2021;42:101220.
66. Zhang T, Zhu C, Zhao Y, et al. Deep learning model to classify and monitor idiopathic scoliosis in adolescents using a single smartphone photograph. JAMA Netw Open. 2023;6:e2330617.
67. Zhao M, Meng N, Cheung JPY, Yu C, Lu P, Zhang T. SpineHRformer: a transformer-based deep learning model for automatic spine deformity assessment with prospective validation. Bioengineering. 2023;10:1333.
68. Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol. 2022;28:605-7.
69. Subramanian J, Simon R. Overfitting in prediction models - is it a problem only in high dimensions? Contemp Clin Trials. 2013;36:636-41.
70. Bauer EA, Cohen DE. The changing roles of industry and academia. J Invest Dermatol. 2012;132:1033-6.
72. U.S. Food & Drug Administration. Artificial intelligence & medical products: how CBER, CDER, CDRH, and OCP are working together. 2024. Available from: https://www.fda.gov/media/177030/download. [Last accessed on 6 May 2025].
73. Liu T, Xiao X. A framework of AI-based approaches to improving eHealth literacy and combating infodemic. Front Public Health. 2021;9:755808.