REFERENCES
1. Richter F, Shen S, Liu F, et al. Autonomous robotic suction to clear the surgical field for hemostasis using image-based blood flow detection. IEEE Rob Autom Lett. 2021;6:1383-90.
2. Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci Robit. 2022;7:abj2908.
3. Su B, Yu S, Li X, et al. Autonomous robot for removing superficial traumatic blood. IEEE J Transl Eng Health Med. 2021;9:1-9.
4. Saeidi H, Le HND, Opfermann JD, et al. Autonomous laparoscopic robotic suturing with a novel actuated suturing tool and 3D endoscope. In: 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20-24; Montreal, Canada. IEEE; 2019. pp. 1541-7.33628614PMC7901147.
5. Ginesi M, Meli D, Roberti A, Sansonetto N, Fiorini P. Autonomous task planning and situation awareness in robotic surgery. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2020 Oct 24 - 2021 Jan 24; Las Vegas, USA. IEEE; 2021. pp. 3144-50.
6. Attanasio A, Scaglioni B, De Momi E, Fiorini P, Valdastri P. Autonomy in surgical robotics. Annu Rev Control Robot Auton Syst. 2021;4:651-79.
7. Han J, Davids J, Ashrafian H, Darzi A, Elson DS, Sodergren M. A systematic review of robotic surgery: from supervised paradigms to fully autonomous robotic approaches. Int J Med Robot Comp. 2022;18:e2358.
8. Bawa VS, Singh G, KapingA F, et al. The SARAS endoscopic surgeon action detection (ESAD) dataset: challenges and methods. arXiv. [Preprint.] Apr 7, 2021 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.2104.03178.
9. Bawa VS, Singh G, KapingA F, et al. ESAD: endoscopic surgeon action detection dataset. arXiv. [Preprint.] Jun 12, 2020 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.2006.07164.
10. Yoon J, Hong S, Hong S, et al. Surgical scene segmentation using semantic image synthesis with a virtual surgery environment. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. 2022. pp. 551-61.
11. Carstens M, Rinner FM, Bodenstedt S, et al. The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Sci Data. 2023;10:3.
12. Colleoni E, Edwards P, Stoyanov D. Synthetic and real inputs for tool segmentation in robotic surgery. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. pp. 700-10.
13. Gao Y, Vedula SS, Reiley CE, et al. JHU-ISI gesture and skill assessment working set (JIGSAWS): a surgical activity dataset for human motion modeling. Available from: https://cirl.lcsr.jhu.edu/wp-content/uploads/2015/11/JIGSAWS.pdf. [Last accessed on 13 Nov 2024].
14. Rivas-Blanco I, Pérez-del-Pulgar CJ, Mariani A, Tortora G, Reina AJ. A surgical dataset from the da Vinci Research Kit for task automation and recognition arXiv. [Preprint.] Jun 29, 2023 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.2102.03643.
15. Hussein A, Gaber MM, Elyan E, Jayne C. Imitation learning: a survey of learning methods. ACM Comput Surveys. 2017;50:1-35.
16. Zeng Andy, Florence P, Tompson J, et al. Transporter networks: rearranging the visual world for robotic manipulation. arXiv. [Preprint.] Jan 5, 2022 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.2010.14406.
17. Yang S, Zhang W, Lu W, Wang H, Li Y. Cross-context visual imitation learning from demonstrations. In: 2020 IEEE International Conference on Robotics and Automation (ICRA); 2020 May 31 - Aug 31; Paris, France. IEEE; 2020. pp. 5467-73.
18. Eraqi HM, Moustafa MN, Honer J. End-to-end deep learning for steering autonomous vehicles considering temporal dependencies. arXiv. [Preprint.] Nov 22, 2017 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.1710.03804.
19. Tanwani AK, Sermanet P, Yan A, Anand R, Phielipp M, Goldberg K. Motion2Vec: semi-supervised representation learning from surgical videos. arXiv. [Preprint.] May 31, 2020 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.2006.00545.
20. Murali A, Sen S, Kehoe B, et al. Learning by observation for surgical subtasks: multilateral cutting of 3d viscoelastic and 2d orthotropic tissue phantoms. In: 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26-30; Seattle, USA. IEEE; 2015. pp. 1202-9.
21. Zhao TZ, Kumar V, Levine S, Finn C. Learning fine-grained bimanual manipulation with low-cost hardware. arXiv. [Preprint.] Apr 23, 2023 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.2304.13705.
22. Kim JW, Schmidgall S, Krieger A, Kobilarov M. Learning a library of surgical manipulation skills for robotic surgery. In: Bridging the Gap between Cognitive Science and Robot Learning in the Real World: Progresses and New Directions. 2024. Available from: https://openreview.net/forum?id=fYRlaylCI3. [Last accessed on 13 Nov 2024].
23. Karimi A, Shojaei A. Measurement of the mechanical properties of the human kidney. IRBM. 2017;38:292-7.
24. Levillain A, Confavreux CB, Decaussin-Petrucci M, et al. Mechanical properties of breast, kidney, and thyroid tumours measured by AFM: relationship with tissue structure. Materialia. 2022;25:101555.
25. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. arXiv. [Preprint.] May 18, 2015 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.1505.04597.
26. Wasserthal J, Breit HC, Meyer MT, et al. TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol Artif Intell. 2023;5:230024.
27. Scheikl PM, Gyenes B, Younis R, et al. LapGym - an open source framework for reinforcement learning in robot-assisted laparoscopic surgery. J Mach Learn Res 2023;24:1-42. Available from: https://www.jmlr.org/papers/volume24/23-0207/23-0207.pdf. [Last accessed on 13 Nov 2024].
28. Torabi F, Warnell G, Stone P. Behavioral cloning from observation. arXiv. [Preprint.] May 11, 2018 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.1805.01954.
29. Dosovitskiy A, Beyer A, Kolesnikov A, et al. An image is worth 16× 16 words: transformers for image recognition at scale. arXiv. [Preprint.] Jun 3, 2021 [accessed 2024 Nov 13]. Available from: https://doi.org/10.48550/arXiv.2010.11929.