REFERENCES
1. Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR Spine 2019;2:e1044.
2. Ruiz-España S, Arana E, Moratal D. Semiautomatic computer-aided classification of degenerative lumbar spine disease in magnetic resonance imaging. Comput Biol Med 2015;62:196-205.
3. Jamaludin A, Lootus M, Kadir T, et al; Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist. Eur Spine J 2017;26:1374-83.
4. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001;26:1873-8.
5. Johnson PM, Drangova M. Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn Reson Med 2019;82:901-10.
6. Galbusera F, Bassani T, Casaroli G, et al. Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging. Eur Radiol Exp 2018;2:29.
7. Charles YP, Lamas V, Ntilikina Y. Artificial intelligence and treatment algorithms in spine surgery. Orthop Traumatol Surg Res 2023;109:103456.
8. Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal cobb angles by structured multi-output regression. In: Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P, Shen D, editors. Information processing in medical imaging. Cham: Springer International Publishing; 2017. pp. 529-40.
9. Zhang J, Li H, Lv L, Zhang Y. Computer-aided cobb measurement based on automatic detection of vertebral slopes using deep neural network. Int J Biomed Imaging 2017;2017:9083916.
10. Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med Image Anal 2018;48:1-11.
11. Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray images: performance evaluation. Eur Spine J 2020;29:2295-305.
12. Pellisé F, Serra-Burriel M, Smith JS, et al; International Spine Study Group, European Spine Study Group. Development and validation of risk stratification models for adult spinal deformity surgery. J Neurosurg Spine 2019;31:587-99.
13. Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine 2019;44:915-26.
14. Lee MJ, Cizik AM, Hamilton D, Chapman JR. Predicting surgical site infection after spine surgery: a validated model using a prospective surgical registry. Spine J 2014;14:2112-7.
15. Scheer JK, Smith JS, Schwab F, et al; International Spine Study Group. Development of a preoperative predictive model for major complications following adult spinal deformity surgery. J Neurosurg Spine 2017;26:736-43.
16. Durand WM, DePasse JM, Daniels AH. Predictive modeling for blood transfusion after adult spinal deformity surgery: a tree-based machine learning approach. Spine 2018;43:1058-66.
17. Wang SK, Wang P, Li ZE, et al. Development and external validation of a predictive model for prolonged length of hospital stay in elderly patients undergoing lumbar fusion surgery: comparison of three predictive models. Eur Spine J 2024;33:1044-54.
18. Sebastian A, Goyal A, Alvi MA, et al. Assessing the performance of national surgical quality improvement program surgical risk calculator in elective spine surgery: insights from patients undergoing single-level posterior lumbar fusion. World Neurosurg 2019;126:e323-9.
19. Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg Spine 2019;31:568-78.
20. Broda A, Sanford Z, Turcotte J, Patton C. Development of a risk prediction model with improved clinical utility in elective cervical and lumbar spine surgery. Spine 2020;45:E542-51.
21. Churruca K, Pomare C, Ellis LA, et al. Patient-reported outcome measures (PROMs): a review of generic and condition-specific measures and a discussion of trends and issues. Health Expect 2021;24:1015-24.
23. Mobbs RJ. From the subjective to the objective era of outcomes analysis: how the tools we use to measure outcomes must change to be reflective of the pathologies we treat in spinal surgery. J Spine Surg 2021;7:456-7.
24. Ahmad HS, Yang AI, Basil GW, et al. Developing a prediction model for identification of distinct perioperative clinical stages in spine surgery with smartphone-based mobility data. Neurosurgery 2022;90:588-96.
25. Chauhan D, Ahmad HS, Subtirelu R, et al. Defining the minimal clinically important difference in smartphone-based mobility after spine surgery: correlation of survey questionnaire to mobility data. J Neurosurg Spine 2023;39:427-37.
26. Boaro A, Leung J, Reeder HT, et al. Smartphone GPS signatures of patients undergoing spine surgery correlate with mobility and current gold standard outcome measures. J Neurosurg Spine 2021;35:796-806.
27. Lewandrowski KU, Alvim Fiorelli RK, Pereira MG, et al. Polytomous rasch analyses of surgeons’ decision-making on choice of procedure in endoscopic lumbar spinal stenosis decompression surgeries. Int J Spine Surg 2024;18:164-77.
28. Lorio M, Martinson M, Ferrara L. Paired comparison survey analyses utilizing rasch methodology of the relative difficulty and estimated work relative value units of CPT® code 27279. Int J Spine Surg 2016;10:40.
29. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what, why, how, when and where? Clin Kidney J 2021;14:49-58.
30. Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2:e200029.
31. Sounderajah V, Ashrafian H, Golub RM, et al; STARD-AI Steering Committee. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709.
32. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 2024;385:e078378.
33. Collins GS, Reitsma JB, Altman DG, Moons KG; TRIPOD Group. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. The TRIPOD Group. Circulation 2015;131:211-9.