REFERENCES

1. Dumas RP, Vella MA, Hatchimonji JS, Ma L, Maher Z, Holena DN. Trauma video review utilization: a survey of practice in the United States. Am J Surg 2020;219:49-53.

2. Lynch RJ, Englesbe MJ, Sturm L, et al. Measurement of foot traffic in the operating room: implications for infection control. Am J Med Qual 2009;24:45-52.

3. Hazlehurst B, McMullen CK, Gorman PN. Distributed cognition in the heart room: how situation awareness arises from coordinated communications during cardiac surgery. J Biomed Inform 2007;40:539-51.

4. Harders M, Malangoni MA, Weight S, Sidhu T. Improving operating room efficiency through process redesign. Surgery 2006;140:509-14.

5. Palmer G 2nd, Abernathy JH 3rd, Swinton G, et al. Realizing improved patient care through human-centered operating room design: a human factors methodology for observing flow disruptions in the cardiothoracic operating room. Anesthesiology 2013;119:1066-77.

6. Catchpole K, Mishra A, Handa A, McCulloch P. Teamwork and error in the operating room: analysis of skills and roles. Ann Surg 2008;247:699-706.

7. Mottaghi A, Sharghi A, Yeung S, Mohareri O. Adaptation of surgical activity recognition models across operating rooms. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editors. Medical image computing and computer assisted intervention - MICCAI 2022. Cham: Springer; 2022. pp. 530-40.

8. Bogo F, Kanazawa A, Lassner C, Gehler P, Romero J, Black MJ. Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision - ECCV 2016. Cham: Springer; 2016. pp. 561-78.

9. Li H, Zech J, Hong D, Ghamisi P, Schultz M, Zipf A. Leveraging OpenStreetMap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection. Int J Appl Earth Obs Geoinf 2022;110:102804.

10. Yuan Y, Iqbal U, Molchanov P, Kitani K, Kautz J. GLAMR: Global occlusion-aware human mesh recovery with dynamic cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022. pp. 11038-49. Available from: https://openaccess.thecvf.com/content/CVPR2022/html/Yuan_GLAMR_Global_Occlusion-Aware_Human_Mesh_Recovery_With_Dynamic_Cameras_CVPR_2022_paper.html. [Last accessed on 21 Jun 2024]

11. Kocabas M, Athanasiou N, Black MJ. Vibe: Video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. pp. 5253-63. Available from: https://openaccess.thecvf.com/content_CVPR_2020/html/Kocabas_VIBE_Video_Inference_for_Human_Body_Pose_and_Shape_Estimation_CVPR_2020_paper.html. [Last accessed on 21 Jun 2024]

12. Tian Y, Zhang H, Liu Y, Wang L. Recovering 3D human mesh from monocular images: a survey. IEEE Trans Pattern Anal Mach Intell 2023;45:15406-25.

13. Shao S, Zhao Z, Li B, et al. CrowdHuman: a benchmark for detecting human in a crowd. arXiv. [Preprint.] Apr 30, 2018 [accessed 2024 Jun 21]. Available from: https://arxiv.org/abs/1805.00123.

14. Weng SK, Kuo CM, Tu SK. Video object tracking using adaptive Kalman filter. J Vis Commun Image Represent 2006;17:1190-208.

15. Li Z, Liu J, Zhang Z, Xu S, Yan Y. CLIFF: carrying location information in full frames into human pose and shape estimation. In: Avidan S, Brostow G, Cissé M, Farinella GM, Hassner T, editors. Computer Vision - ECCV 2022: 17th European Conference; 2022 Oct 23-27; Tel Aviv, Israel. Cham: Springer; 2022. pp. 590-606.

16. Kolotouros N, Pavlakos G, Black MJ, Daniilidis K. Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. pp. 2252-61. Available from: https://openaccess.thecvf.com/content_ICCV_2019/html/Kolotouros_Learning_to_Reconstruct_3D_Human_Pose_and_Shape_via_Model-Fitting_ICCV_2019_paper.html. [Last accessed on 21 Jun 2024]

17. Lin TY, Maire M, Belongie S, et al. Microsoft COCO: common objects in context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. In: Computer Vision - ECCV 2014. Cham: Springer; 2014. pp. 740-55.

18. Ionescu C, Papava D, Olaru V, Sminchisescu C. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans Pattern Anal Mach Intell 2014;36:1325-39.

19. von Marcard T, Henschel R, Black MJ, Rosenhahn B, Pons-moll G. Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision - ECCV 2018. Cham: Springer; 2018. pp. 614-31.

20. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. pp. 779-88. Available from: https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html. [Last accessed on 21 Jun 2024]

21. Pavlakos G, Choutas V, Ghorbani N, et al. Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019. pp. 10975-85. Available from: https://openaccess.thecvf.com/content_CVPR_2019/html/Pavlakos_Expressive_Body_Capture_3D_Hands_Face_and_Body_From_a_CVPR_2019_paper.html. [Last accessed on 21 Jun 2024]

22. Mentis HM, Chellali A, Manser K, Cao CG, Schwaitzberg SD. A systematic review of the effect of distraction on surgeon performance: directions for operating room policy and surgical training. Surg Endosc 2016;30:1713-24.

23. Tolstikhin IO, Houlsby N, Kolesnikov A, et al. MLP-Mixer: an all-MLP architecture for vision. In: Advances in Neural Information Processing Systems 34 (NeurIPS 2021). Available from: https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html. [Last accessed on 21 Jun 2024]

24. Choe J, Park C, Rameau F, Park J, Kweon IS. PointMixer: MLP-mixer for point cloud understanding. In: Avidan S, Brostow G, Cissé M, Farinella GM, Hassner T, editors. Computer Vision - ECCV 2022. Cham: Springer; 2022. pp. 620-40.

25. Ekambaram V, Jati A, Nguyen N, Sinthong P, Kalagnanam J. TSMixer: lightweight MLP-mixer model for multivariate time series forecasting. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM; 2023. pp. 459-469.

26. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv. [Preprint.] Dec 22, 2014 [accessed 2024 Jun 21]. Available from: https://arxiv.org/abs/1412.6980.

27. Mehta D, Rhodin H, Casas D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision. arXiv. [Preprint.] Nov 29, 2016 [accessed 2024 Jun 21]. Available from: https://arxiv.org/abs/1611.09813.

28. Moon G, Choi H, Lee KM. Accurate 3D hand pose estimation for whole-body 3D human mesh estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022. pp. 2308-17. Available from: https://openaccess.thecvf.com/content/CVPR2022W/ABAW/html/Moon_Accurate_3D_Hand_Pose_Estimation_for_Whole-Body_3D_Human_Mesh_CVPRW_2022_paper.html. [Last accessed on 21 Jun 2024]

29. Zhang X, Li Q, Mo H, Zhang W, Zheng W. End-to-end hand mesh recovery from a monocular rgb image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019. pp. 2354-64. Available from: https://openaccess.thecvf.com/content_ICCV_2019/html/Zhang_End-to-End_Hand_Mesh_Recovery_From_a_Monocular_RGB_Image_ICCV_2019_paper.html. [Last accessed on 21 Jun 2024]

30. Doyen B, Gordon L, Soenens G, et al. Introduction of a surgical Black Box system in a hybrid angiosuite: challenges and opportunities. Phys Med 2020;76:77-84.

31. Garrow CR, Kowalewski KF, Li L, et al. Machine learning for surgical phase recognition: a systematic review. Ann Surg 2021;273:684-93.

32. Hardie JA, Hunn D, Mitchell TE, Brennan PA. Patient, Procedure, People (PPP): recognising and responding to intraoperative critical events. Ann R Coll Surg Engl 2022;104:409-13.

33. Fasting S, Gisvold SE. Serious intraoperative problems - a five-year review of 83,844 anesthetics. Can J Anaesth 2002;49:545-53.

34. Yu X, Xiao H, Wang R, Huang Y. Prediction of massive blood loss in scoliosis surgery from preoperative variables. Spine 2013;38:350-5.

35. Chadebecq F, Vasconcelos F, Mazomenos E, Stoyanov D. Computer vision in the surgical operating room. Visc Med 2020;36:456-62.

36. Nasri BN, Mitchell JD, Jackson C, Nakamoto K, Guglielmi C, Jones DB. Distractions in the operating room: a survey of the healthcare team. Surg Endosc 2023;37:2316-25.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/