REFERENCES

1. Huesch MD, Mosher TJ. Using it or losing it? The case for data scientists inside health care. NEJM Catal. 2017. Available from: https://catalyst.nejm.org/doi/full/10.1056/CAT.17.0493. [Last accessed on 28 Apr 2025]

2. Stein B, Morrison A. The enterprise data lake: better integration and deeper analytics. 2014. Available from: https://www.smallake.kr/wp-content/uploads/2017/03/20170313_074222.pdf. [Last accessed on 28 Apr 2025].

3. Moor M, Banerjee O, Abad ZSH, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616:259-65.

4. Bilimoria KY, Liu Y, Paruch JL, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg. 2013;217:833-42.e1.

5. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268:70-6.

6. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv 2017; arXiv:1706.03762. Available from: https://doi.org/10.48550/arXiv.1706.03762. [accessed 28 Apr 2025]

7. Bommasani R, Hudson DA, Adeli E, et al. On the opportunities and risks of foundation models. arXiv 2021; arXiv:2108.07258. Available from: https://doi.org/10.48550/arXiv.2108.07258. [accessed 28 Apr 2025]

8. Saha DK, Hossain T, Safran M, Alfarhood S, Mridha MF, Che D. Segmentation for mammography classification utilizing deep convolutional neural network. BMC Med Imaging. 2024;24:334.

9. Brown TB, Mann B, Ryder N, et al. Language models are few-shot learners. arXiv 2020; arXiv:2005.14165. Available from: https://doi.org/10.48550/arXiv.2005.14165. [accessed 28 Apr 2025]

10. Liu Y, Ko CY, Hall BL, Cohen ME. American college of surgeons NSQIP risk calculator accuracy using a machine learning algorithm compared with regression. J Am Coll Surg. 2023;236:1024-30.

11. Bhargava A, López-Espina C, Schmalz L, et al. FDA-authorized AI/ML tool for sepsis prediction: development and validation. NEJM AI. 2024;1:867.

12. Dong H, Falis M, Whiteley W, et al. Automated clinical coding: what, why, and where we are? NPJ Digit Med. 2022;5:159.

13. Meddeb A, Lüken S, Busch F, et al. Large language model ability to translate CT and MRI free-text radiology reports into multiple languages. Radiology. 2024;313:e241736.

14. Pan A, Musheyev D, Bockelman D, Loeb S, Kabarriti AE. Assessment of artificial intelligence chatbot responses to top searched queries about cancer. JAMA Oncol. 2023;9:1437-40.

15. Mika AP, Martin JR, Engstrom SM, Polkowski GG, Wilson JM. Assessing ChatGPT responses to common patient questions regarding total hip arthroplasty. J Bone Joint Surg Am. 2023;105:1519-26.

16. Seth I, Cox A, Xie Y, et al. Evaluating chatbot efficacy for answering frequently asked questions in plastic surgery: a ChatGPT case study focused on breast augmentation. Aesthet Surg J. 2023;43:1126-35.

17. Li W, Zhang Y, Chen F. ChatGPT in colorectal surgery: a promising tool or a passing fad? Ann Biomed Eng. 2023;51:1892-7.

18. Garcia Valencia OA, Thongprayoon C, Jadlowiec CC, Mao SA, Miao J, Cheungpasitporn W. Enhancing kidney transplant care through the integration of chatbot. Healthcare. 2023;11:2518.

19. Lechien JR. Generative AI and otolaryngology-head & neck surgery. Otolaryngol Clin North Am. 2024;57:753-65.

20. van der Stam JA, Mestrom EHJ, Nienhuijs SW, et al. A wearable patch based remote early warning score (REWS) in major abdominal cancer surgery patients. Eur J Surg Oncol. 2023;49:278-84.

21. Londral A, Azevedo S, Dias P, et al. Developing and validating high-value patient digital follow-up services: a pilot study in cardiac surgery. BMC Health Serv Res. 2022;22:680.

22. Nagappa M, Subramani Y, Yang H, et al. Enhancing quadruple health outcomes after thoracic surgery: feasibility pilot randomized controlled trial using digital home monitoring. JMIR Perioper Med. 2025;8:e58998.

23. Odland I, Liu KJ, Wu D, et al. Real-world evaluation of the accuracy of the Viz.AI automated intracranial hemorrhage volume calculation tool. J Neurointerv Surg. 2025:jnis-2024-022564.

24. Graeve VIJ, Laures S, Spirig A, et al. Implementation of an AI algorithm in clinical practice to reduce missed incidental pulmonary embolisms on chest CT and its impact on short-term survival. Invest Radiol. 2025;60:260-6.

25. Ma J, He Y, Li F, Han L, You C, Wang B. Segment anything in medical images. Nat Commun. 2024;15:654.

26. Nwaiwu CA, Buharin VE, Mach A, et al. Feasibility and comparison of laparoscopic laser speckle contrast imaging to near-infrared display of indocyanine green in intraoperative tissue blood flow/tissue perfusion in preclinical porcine models. Surg Endosc. 2023;37:1086-95.

27. Aklilu JG, Sun MW, Goel S, et al. Artificial intelligence identifies factors associated with blood loss and surgical experience in cholecystectomy. NEJM AI. 2024;1:88.

28. Duke AI Health. Algorithm-Based Clinical Decision Support (ABCDS) Oversight. Available from: https://aihealth.duke.edu/algorithm-based-clinical-decision-support-abcds/. [Last accessed on 28 Apr 2025].

29. World Health Organization. Ethics and governance of artificial intelligence for health. 2021. Available from: https://www.who.int/publications-detail-redirect/9789240029200. [Last accessed on 28 Apr 2025].

30. Solanki P, Grundy J, Hussain W. Operationalising ethics in artificial intelligence for healthcare: a framework for AI developers. AI Ethics. 2023;3:223-40.

31. Wójcik MA. Foundation models in healthcare: opportunities, biases and regulatory prospects in Europe. In: Kő A, Francesconi E, Kotsis G, Tjoa AM, Khalil I, editors. Electronic government and the information systems perspective. Cham: Springer International Publishing; 2022. pp. 32-46.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/