REFERENCES

1. Gulla A, Jakiunaite I, Juchneviciute I, Dzemyda G. A narrative review: predicting liver transplant graft survival using artificial intelligence modeling. Front Transplant. 2024;3:1378378.

2. Bhat M, Rabindranath M, Chara BS, Simonetto DA. Artificial intelligence, machine learning, and deep learning in liver transplantation. J Hepatol. 2023;78:1216-33.

3. Pruinelli L, Balakrishnan K, Ma S, et al. Transforming liver transplant allocation with artificial intelligence and machine learning: a systematic review. BMC Med Inform Decis Mak. 2025;25:98.

4. Yu YD, Lee KS, Man Kim J, et al; Korean Organ Transplantation Registry Study Group. Artificial intelligence for predicting survival following deceased donor liver transplantation: retrospective multi-center study. Int J Surg. 2022;105:106838.

5. Ge J, Digitale JC, Fenton C, et al. Predicting post-liver transplant outcomes in patients with acute-on-chronic liver failure using expert-augmented machine learning. Am J Transplant. 2023;23:1908-21.

6. He ZL, Zhou JB, Liu ZK, et al. Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation. Hepatobiliary Pancreat Dis Int. 2021;20:222-31.

7. Jain V, Bansal A, Radakovich N, et al. Machine learning models to predict major adverse cardiovascular events after orthotopic liver transplantation: a cohort study. J Cardiothorac Vasc Anesth. 2021;35:2063-9.

8. Yanagawa R, Iwadoh K, Akabane M, et al. LightGBM outperforms other machine learning techniques in predicting graft failure after liver transplantation: creation of a predictive model through large-scale analysis. Clin Transplant. 2024;38:e15316.

9. Yao W, Bai J, Liao W, Chen Y, Liu M, Xie Y. From CNN to transformer: a review of medical image segmentation models. J Imaging Inform Med. 2024;37:1529-47.

10. Li C, Jiang X, Zhang K. A transformer-based deep learning approach for fairly predicting post-liver transplant risk factors. J Biomed Inform. 2024;149:104545.

11. Nitski O, Azhie A, Qazi-Arisar FA, et al. Long-term mortality risk stratification of liver transplant recipients: real-time application of deep learning algorithms on longitudinal data. Lancet Digit Health. 2021;3:e295-305.

12. Papanastasiou G, Dikaios N, Huang J, Wang C, Yang G. Is attention all you need in medical image analysis? A review. IEEE J Biomed Health Inform. 2024;28:1398-411.

13. Wada N, Fujita N, Ishimatsu K, et al. A novel fast kilovoltage switching dual-energy computed tomography technique with deep learning: utility for non-invasive assessments of liver fibrosis. Eur J Radiol. 2022;155:110461.

14. Yu H, Sharifai N, Jiang K, et al. Artificial intelligence based liver portal tract region identification and quantification with transplant biopsy whole-slide images. Comput Biol Med. 2022;150:106089.

15. Ahn JC, Attia ZI, Rattan P, et al. Development of the AI-cirrhosis-ECG score: an electrocardiogram-based deep learning model in cirrhosis. Am J Gastroenterol. 2022;117:424-32.

16. Mazumder NR, Enchakalody B, Zhang P, Su GL. Using artificial intelligence to predict cirrhosis from computed tomography scans. Clin Transl Gastroenterol. 2023;14:e00616.

17. Azhie A, Sharma D, Sheth P, et al. A deep learning framework for personalised dynamic diagnosis of graft fibrosis after liver transplantation: a retrospective, single Canadian centre, longitudinal study. Lancet Digit Health. 2023;5:e458-66.

18. Qazi Arisar FA, Salinas-Miranda E, Ale Ali H, et al. Development of a radiomics-based model to predict graft fibrosis in liver transplant recipients: a pilot study. Transpl Int. 2023;36:11149.

19. Gerussi A, Verda D, Bernasconi DP, et al. Machine learning in primary biliary cholangitis: a novel approach for risk stratification. Liver Int. 2022;42:615-27.

20. Umbaugh DS, Nguyen NT, Curry SC, et al; Acute Liver Failure Study Group. The chemokine CXCL14 is a novel early prognostic biomarker for poor outcome in acetaminophen-induced acute liver failure. Hepatology. 2024;79:1352-64.

21. Schuessler M, Saner F, Al-Rashid F, Schlosser T. Diagnostic accuracy of coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) in patients before liver transplantation using CT-FFR machine learning algorithm. Eur Radiol. 2022;32:8761-8.

22. Ahmed O, Doyle MBM. Liver transplantation: expanding the donor and recipient pool. Chin Clin Oncol. 2021;10:6.

23. Silva AC, Nogueira P, Machado MV. Hepatic steatosis after liver transplantation: a systematic review and meta-analysis. Liver Transpl. 2023;29:431-48.

24. Pérez-Sanz F, Riquelme-Pérez M, Martínez-Barba E, et al. Efficiency of machine learning algorithms for the determination of macrovesicular steatosis in frozen sections stained with sudan to evaluate the quality of the graft in liver transplantation. Sensors. 2021;21:1993.

25. Tang H, Jiao J, Lin JD, Zhang X, Sun N. Detection of large-droplet macrovesicular steatosis in donor livers based on segment-anything model. Lab Invest. 2024;104:100288.

26. Gambella A, Salvi M, Molinaro L, et al. Improved assessment of donor liver steatosis using Banff consensus recommendations and deep learning algorithms. J Hepatol. 2024;80:495-504.

27. Frey KL, McLeod MC, Cannon RM, et al. Non-invasive evaluation of hepatic macrosteatosis in deceased donors. Am J Surg. 2023;226:692-6.

28. Cherchi V, Mea VD, Terrosu G, et al. Assessment of hepatic steatosis based on needle biopsy images from deceased donor livers. Clin Transplant. 2022;36:e14557.

29. Lim J, Han S, Lee D, et al. Identification of hepatic steatosis in living liver donors by machine learning models. Hepatol Commun. 2022;6:1689-98.

30. Jeong JG, Choi S, Kim YJ, Lee WS, Kim KG. Deep 3D attention CLSTM U-Net based automated liver segmentation and volumetry for the liver transplantation in abdominal CT volumes. Sci Rep. 2022;12:6370.

31. Yang X, Park S, Lee S, et al. Estimation of right lobe graft weight for living donor liver transplantation using deep learning-based fully automatic computed tomographic volumetry. Sci Rep. 2023;13:17746.

32. Giglio MC, Zanfardino M, Franzese M, et al. Machine learning improves the accuracy of graft weight prediction in living donor liver transplantation. Liver Transpl. 2023;29:172-83.

33. Kazami Y, Kaneko J, Keshwani D, et al. Two-step artificial intelligence algorithm for liver segmentation automates anatomic virtual hepatectomy. J Hepatobiliary Pancreat Sci. 2023;30:1205-17.

34. Oh N, Kim B, Kim T, Rhu J, Kim J, Choi GS. Real-time segmentation of biliary structure in pure laparoscopic donor hepatectomy. Sci Rep. 2024;14:22508.

35. Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology. 2016;150:835-53.

36. Huang H, Xie Y, Wang G, Zhang L, Zhou W. DLNLF-net: denoised local and non-local deep features fusion network for malignancy characterization of hepatocellular carcinoma. Comput Methods Programs Biomed. 2022;227:107201.

37. Kwong A, Hameed B, Syed S, et al. Machine learning to predict waitlist dropout among liver transplant candidates with hepatocellular carcinoma. Cancer Med. 2022;11:1535-41.

38. He T, Fong JN, Moore LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer. Comput Med Imaging Graph. 2021;89:101894.

39. Liu Z, Liu Y, Zhang W, et al. Deep learning for prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: a discovery and validation study. Hepatol Int. 2022;16:577-89.

40. Ivanics T, Nelson W, Patel MS, et al. The Toronto postliver transplantation hepatocellular carcinoma recurrence calculator: a machine learning approach. Liver Transpl. 2022;28:593-602.

41. Liu S, Nalesnik MA, Singhi A, et al. Transcriptome and exome analyses of hepatocellular carcinoma reveal patterns to predict cancer recurrence in liver transplant patients. Hepatol Commun. 2022;6:710-27.

42. Tran BV, Moris D, Markovic D, et al. Development and validation of a REcurrent Liver cAncer Prediction ScorE (RELAPSE) following liver transplantation in patients with hepatocellular carcinoma: Analysis of the US Multicenter HCC Transplant Consortium. Liver Transpl. 2023;29:683-97.

43. Qu WF, Tian MX, Lu HW, et al. Development of a deep pathomics score for predicting hepatocellular carcinoma recurrence after liver transplantation. Hepatol Int. 2023;17:927-41.

44. To J, Ghosh S, Zhao X, et al. Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation. Hum Genomics. 2024;18:58.

45. Iseke S, Zeevi T, Kucukkaya AS, et al. Machine learning models for prediction of posttreatment recurrence in early-stage hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-concept study. AJR Am J Roentgenol. 2023;220:245-55.

46. Altaf A, Mustafa A, Dar A, et al. Artificial intelligence-based model for the recurrence of hepatocellular carcinoma after liver transplantation. Surgery. 2024;176:1500-6.

47. Guijo-Rubio D, Briceño J, Gutiérrez PA, Ayllón MD, Ciria R, Hervás-Martínez C. Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS One. 2021;16:e0252068.

48. Cooper JP, Perkins JD, Warner PR, et al. Acute graft-versus-host disease after orthotopic liver transplantation: predicting this rare complication using machine learning. Liver Transpl. 2022;28:407-21.

49. Ding S, Tang R, Zha D, et al. Fairly predicting graft failure in liver transplant for organ assigning. AMIA Annu Symp Proc. 2023;2022:415-24.

50. Lin Y, Huang H, Cao J, et al. An integrated proteomics and metabolomics approach to assess graft quality and predict early allograft dysfunction after liver transplantation: a retrospective cohort study. Int J Surg. 2024;110:3480-94.

51. Bambha K, Kim NJ, Sturdevant M, et al. Maximizing utility of nondirected living liver donor grafts using machine learning. Front Immunol. 2023;14:1194338.

52. Zalba Etayo B, Marín Araiz L, Montes Aranguren M, et al. Graft survival in liver transplantation: an artificial neuronal network assisted analysis of the importance of comorbidities. Exp Clin Transplant. 2023;21:338-44.

53. Yang M, Peng B, Zhuang Q, et al. Models to predict the short-term survival of acute-on-chronic liver failure patients following liver transplantation. BMC Gastroenterol. 2022;22:80.

54. Yasodhara A, Dong V, Azhie A, Goldenberg A, Bhat M. Identifying modifiable predictors of long-term survival in liver transplant recipients with diabetes mellitus using machine learning. Liver Transpl. 2021;27:536-47.

55. Ivanics T, So D, Claasen MPAW, et al. Machine learning-based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries. Am J Transplant. 2023;23:64-71.

56. Park SJ, Yoon JH, Joo I, Lee JM. Newly developed sarcopenia after liver transplantation, determined by a fully automated 3D muscle volume estimation on abdominal CT, can predict post-transplant diabetes mellitus and poor survival outcomes. Cancer Imaging. 2023;23:73.

57. Liu Z, Wu Y, Khan AA, et al. Deep learning-based radiomics allows for a more accurate assessment of sarcopenia as a prognostic factor in hepatocellular carcinoma. J Zhejiang Univ Sci B. 2024;25:83-90.

58. Fonseca ALF, Santos BC, Anastácio LR, et al. Global Leadership Initiative on Malnutrition criteria for the diagnosis of malnutrition and prediction of mortality in patients awaiting liver transplant: a validation study. Nutrition. 2023;114:112093.

59. Ding S, Tan Q, Chang CY, et al. Multi-task learning for post-transplant cause of death analysis: a case study on liver transplant. AMIA Annu Symp Proc. 2024;2023:913-22.

60. Rogers MP, Janjua HM, Read M, et al. Recipient survival after orthotopic liver transplantation: interpretable machine learning survival tree algorithm for patient-specific outcomes. J Am Coll Surg. 2023;236:563-72.

61. Ponthier L, Marquet P, Moes DJAR, et al. Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation. Eur J Clin Pharmacol. 2023;79:311-9.

62. Li ZR, Li RD, Niu WJ, et al. Population pharmacokinetic modeling combined with machine learning approach improved tacrolimus trough concentration prediction in Chinese adult liver transplant recipients. J Clin Pharmacol. 2023;63:314-25.

63. Du Y, Zhang Y, Yang Z, et al. Artificial neural network analysis of determinants of tacrolimus pharmacokinetics in liver transplant recipients. Ann Pharmacother. 2024;58:469-79.

64. Yoon SB, Lee JM, Jung CW, et al. Machine-learning model to predict the tacrolimus concentration and suggest optimal dose in liver transplantation recipients: a multicenter retrospective cohort study. Sci Rep. 2024;14:19996.

65. Zhang Y, Yang D, Liu Z, et al. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation. J Transl Med. 2021;19:321.

66. Chen C, Yang D, Gao S, et al. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation. Respir Res. 2021;22:94.

67. Freire MP, Rinaldi M, Terrabuio DRB, et al. Prediction models for carbapenem-resistant Enterobacterales carriage at liver transplantation: a multicenter retrospective study. Transpl Infect Dis. 2022;24:e13920.

68. Chen C, Chen B, Yang J, et al. Development and validation of a practical machine learning model to predict sepsis after liver transplantation. Ann Med. 2023;55:624-33.

69. Jang HY, Han SB, Jeong JH, et al. Prognostic value of mitral annular calcification in liver transplant patients: implication in posttransplant outcomes. Transplantation. 2024;108:1954-61.

70. Zaver HB, Mzaik O, Thomas J, et al. Utility of an artificial intelligence enabled electrocardiogram for risk assessment in liver transplant candidates. Dig Dis Sci. 2023;68:2379-88.

71. Fodor M, Zelger P, Pallua JD, et al. Prediction of biliary complications after human liver transplantation using hyperspectral imaging and convolutional neural networks: a proof-of-concept study. Transplantation. 2024;108:506-15.

72. Cheng Y, Zhang XD, Chen C, et al. Dynamic evolution of brain structural patterns in liver transplantation recipients: a longitudinal study based on 3D convolutional neuronal network model. Eur Radiol. 2023;33:6134-44.

73. Lee BP, Roth N, Rao P, et al. Artificial intelligence to identify harmful alcohol use after early liver transplant for alcohol-associated hepatitis. Am J Transplant. 2022;22:1834-41.

74. Lundberg SM, Erion G, Chen H, et al. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2:56-67.

75. Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. arXiv 2016; arXiv:1602.04938. Available from: https://doi.org/10.48550/arXiv.1602.04938. [Last accessed on 15 May 2025]

76. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMJ. 2015;350:g7594.

77. Wood NL, VanDerwerken D, Segev DL, Gentry SE. Correcting the sex disparity in MELD-Na. Am J Transplant. 2021;21:3296-304.

78. Strauss AT, Sidoti CN, Sung HC, et al. Artificial intelligence-based clinical decision support for liver transplant evaluation and considerations about fairness: a qualitative study. Hepatol Commun. 2023;7:e0239.

79. Afshar M, Adelaine S, Resnik F, et al. Deployment of real-time natural language processing and deep learning clinical decision support in the electronic health record: pipeline implementation for an opioid misuse screener in hospitalized adults. JMIR Med Inform. 2023;11:e44977.

80. Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical machine learning: implications and potential remedies. Br J Radiol. 2023;96:20220878.

81. Deeb M, Gangadhar A, Rabindranath M, et al. The emerging role of generative artificial intelligence in transplant medicine. Am J Transplant. 2024;24:1724-30.

82. Ayers JW, Poliak A, Dredze M, et al. Comparing physician and artificial intelligence Chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med. 2023;183:589-96.

83. Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI Chatbot for medicine. N Engl J Med. 2023;388:1233-9.

84. Rasmy L, Xiang Y, Xie Z, Tao C, Zhi D. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Digit Med. 2021;4:86.

85. Patel K, Xie Z, Yuan H, et al. Unsupervised deep representation learning enables phenotype discovery for genetic association studies of brain imaging. Commun Biol. 2024;7:414.

86. Lebret A. Allocating organs through algorithms and equitable access to transplantation-a European human rights law approach. J Law Biosci. 2023;10:lsad004.

87. Zenios SA, Wein LM, Chertow GM. Evidence-based organ allocation. Am J Med. 1999;107:52-61.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/