REFERENCES

1. Mathis MR, Dubovoy TZ, Caldwell MD, Engoren MC. Making sense of big data to improve perioperative care: learning health systems and the multicenter perioperative outcomes group. J Cardiothorac Vasc Anesth. 2020;34:582-5.

2. Zhu Y, Liu X, Li Y, Yi B. The applications and prospects of big data in perioperative anesthetic management. Anesthesiol Perioper Sci. 2024;2:30.

3. Awrahman BJ, Aziz Fatah C, Hamaamin MY. A review of the role and challenges of big data in healthcare informatics and analytics. Comput Intell Neurosci. 2022;2022:5317760.

4. Saugel B, Hoppe P, Khanna AK. Automated continuous noninvasive ward monitoring validation of measurement systems is the real challenge. Anesthesiology. 2020;132:407-10.

5. Boer C, Touw HR, Loer SA. Postanesthesia care by remote monitoring of vital signs in surgical wards. Curr Opin Anaesthesiol. 2018;31:716-22.

6. Walsh C, Zargaran D, Patel N, et al. Practical considerations and successful implementation of vital signs monitoring. J Med Internet Res. 2021;23:e14042.

7. Breteler MJM, KleinJan EJ, Dohmen DAJ, et al. Vital signs monitoring with wearable sensors in high-risk surgical patients a clinical validation study. Anesthesiology. 2020;132:424-39.

8. Syversen A, Dosis A, Jayne D, Zhang Z. Wearable sensors as a preoperative assessment tool: a review. Sensors. 2024;24:482.

9. Angelucci A, Greco M, Canali S, et al. Fitbit data to assess functional capacity in patients before elective surgery: pilot prospective observational study. J Med Internet Res. 2023;25:e42815.

10. Greco M, Angelucci A, Avidano G, et al. Wearable health technology for preoperative risk assessment in elderly patients: the WELCOME study. Diagnostics. 2023;13:630.

11. Amin T, Mobbs RJ, Mostafa N, Sy LW, Choy WJ. Wearable devices for patient monitoring in the early postoperative period: a literature review. Mhealth. 2021;7:50.

12. Abdullah HR, Lim DYZ, Ke Y, Salim NNM, Lan X, Dong Y, et al. The SingHealth Perioperative and Anesthesia Subject Area Registry (PASAR), a large-scale perioperative data mart and registry. Korean J Anesthesiol. 2024;77:58-65.

13. Müller-Wirtz LM, Volk T. Big data in studying acute pain and regional anesthesia. J Clin Med. 2021;10:1425.

14. Ahmed A, Xi R, Hou M, Shah SA, Hameed S. Harnessing big data analytics for healthcare: a comprehensive review of frameworks, implications, applications, and impacts. IEEE Access. 2023;11:112891-928.

15. Manias G, Azqueta-Alzúaz A, Damiani A, et al. An enhanced standardization and qualification mechanism for heterogeneous healthcare data. Stud Health Technol Inform. 2023;302:153-4.

16. Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare: management, analysis and future prospects. J Big Data. 2019;6:54.

17. DeCrane SK, Sands LP, Young KM, DePalma G, Leung JM. Impact of missing data on analysis of postoperative cognitive decline (POCD). Appl Nurs Res. 2013;26:71-5.

18. Aziz KT, Nayar SK, LaPorte DM, Ingari JV, Giladi AM. Impact of missing data on identifying risk factors for postoperative complications in hand surgery. Hand. 2022;17:1257-63.

19. Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7:147-77.

20. National Research Council. The prevention and treatment of missing data in clinical trials. Washington, D.C.: National Academies Press; 2010.

21. Liu M, Li S, Yuan H, et al. Handling missing values in healthcare data: a systematic review of deep learning-based imputation techniques. Artif Intell Med. 2023;142:102587.

22. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res. 2011;20:40-9.

23. Zhang S. Nearest neighbor selection for iteratively kNN imputation. J Syst Softw. 2012;85:2541-52.

24. Stekhoven DJ, Bühlmann P. MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28:112-8.

25. Aggarwal A, Mittal M, Battineni G. Generative adversarial network: an overview of theory and applications. Int J Inf Manag Data Insights. 2021;1:100004.

26. Yoon J, Jordon J, van der Schaar M. GAIN: missing data imputation using generative adversarial nets. arXiv 2018; arXiv:1806.02920. Available from: https://doi.org/10.48550/arXiv.1806.02920. [Last accessed on 28 Jul 2025]

27. Haliduola HN, Bretz F, Mansmann U. Missing data imputation in clinical trials using recurrent neural network facilitated by clustering and oversampling. Biom J. 2022;64:863-82.

28. Lipton ZC, Kale DC, Wetzel R. Modeling missing data in clinical time series with RNNs. arXiv 2016; arXiv:1606.04130. Available from: https://doi.org/10.48550/arXiv.1606.04130. [Last accessed on 28 Jul 2025]

29. Roskams-Hieter B, Wells J, Wade S. Leveraging variational autoencoders for multiple data imputation. In: Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Springer, Cham; 2023. pp. 491-506.

30. Li J, Guo S, Ma R, et al. Comparison of the effects of imputation methods for missing data in predictive modelling of cohort study datasets. BMC Med Res Methodol. 2024;24:41.

31. van Buuren S. Flexible imputation of missing data. 2nd Edition. CRC Press; 2018.

32. Luo Y. Evaluating the state of the art in missing data imputation for clinical data. Brief Bioinform. 2022;23:bbab489.

33. Ahmadian L, Cornet R, Kalkman C, de Keizer NF. Development of a national core dataset for preoperative assessment. Methods Inf Med. 2009;48:155-61.

34. Lodge M, Aitken R, Chong YH, Thillainadesan J. Development of a minimum clinical dataset for preoperative comprehensive geriatric assessment using a modified Delphi technique. Australas J Ageing. 2024;43:733-9.

35. Plebani M. Harmonization in laboratory medicine: the complete picture. Clin Chem Lab Med. 2013;51:741-51.

36. Lareyre F, Behrendt CA, Chaudhuri A, Ayache N, Delingette H, Raffort J. Big data and artificial intelligence in vascular surgery: time for multidisciplinary cross-border collaboration. Angiology. 2022;73:697-700.

37. Vorisek CN, Lehne M, Klopfenstein SAI, et al. Fast healthcare interoperability resources (FHIR) for interoperability in health research: systematic review. JMIR Med Inform. 2022;10:e35724.

38. Larobina M. Thirty years of the DICOM standard. Tomography. 2023;9:1829-38.

39. Guglielminotti J, Dechartres A, Mentré F, Montravers P, Longrois D, Laouénan C. Reporting and methodology of multivariable analyses in prognostic observational studies published in 4 Anesthesiology Journals: a methodological descriptive review. Anesth Analg. 2015;121:1011-29.

40. Kim RB, Alge OP, Liu G, et al. Prediction of postoperative cardiac events in multiple surgical cohorts using a multimodal and integrative decision support system. Sci Rep. 2022;12:11347.

41. Zaslansky R, Chapman CR, Rothaug J, et al. Feasibility of international data collection and feedback on post‐operative pain data: proof of concept. Eur J Pain. 2012;16:430-8.

42. Ahmadi N, Zoch M, Kelbert P, et al. Methods used in the development of common data models for health data: scoping review. JMIR Med Inform. 2023;11:e45116.

43. Reinecke I, Zoch M, Reich C, Sedlmayr M, Bathelt F. The usage of OHDSI OMOP - a scoping review. Stud Health Technol Inform. 2021;283:95-103.

44. Weeks J, Pardee R. Learning to share health care data: a brief timeline of influential common data models and distributed health data networks in U.S. Health Care Research. EGEMS. 2019;7:4.

45. Standardized data: the OMOP common data model. Available from: https://www.ohdsi.org/data-standardization/. [Last accessed on 28 Jul 2025].

46. Sentinel common data model. Available from: https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model. [Last accessed on 28 Jul 2025].

47. PCORnet® common data model. Available from: https://pcornet.org/data/common-data-model/. [Last accessed on 28 Jul 2025].

48. i2b2. Available from: https://www.i2b2.org/about/index.html. [Last accessed on 28 Jul 2025].

49. Garza M, Del Fiol G, Tenenbaum J, Walden A, Zozus MN. Evaluating common data models for use with a longitudinal community registry. J Biomed Inform. 2016;64:333-41.

50. Ong T, Pradhananga R, Holve E, Kahn MG. A framework for classification of electronic health data extraction-transformation-loading challenges in data network participation. EGEMS. 2017;5:10.

51. Akbar SA, Verma A. Analyzing noise models and advanced filtering algorithms for image enhancement. arXiv 2024; arXiv:2410.21946. Available from: https://doi.org/10.48550/arXiv.2410.21946. [Last accessed on 28 Jul 2025].

52. Abdallah Y, Abdelhamid A, Elarif T, Salem ABM. Intelligent techniques in medical volume visualization. Procedia Comput Sci. 2015;65:546-55.

53. Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evol Intell. 2022;15:1-22.

54. Susladkar O, Deshmukh G, Nag S, et al. ClarifyNet: a high-pass and low-pass filtering based CNN for single image dehazing. J Syst Archit. 2022;132:102736.

55. Jurczak M, Kołodziej M, Majkowski A. Implementation of a convolutional neural network for eye blink artifacts removal from the electroencephalography signal. Front Neurosci. 2022;16:782367.

56. Huber NR, Ferrero A, Rajendran K, et al. Dedicated convolutional neural network for noise reduction in ultra-high-resolution photon-counting detector computed tomography. Phys Med Biol. 2022;67:175014.

57. WHO. International statistical classification of diseases and related health problems (ICD). Available from: https://www.who.int/standards/classifications/classification-of-diseases. [Last accessed on 28 Jul 2025].

58. SNOMED International. What is SNOMED CT? Available from: https://www.snomed.org/what-is-snomed-ct. [Last accessed on 28 Jul 2025].

59. LOINC. About LOINC. Available from: https://loinc.org/about/. [Last accessed on 28 Jul 2025].

60. RxNorm. Available from: https://www.nlm.nih.gov/research/umls/rxnorm/index.html. [Last accessed on 28 Jul 2025].

61. CPT®. Available from: https://www.ama-assn.org/practice-management/cpt. [Last accessed on 28 Jul 2025].

62. UCUM. Available from: https://ucum.org/. [Last accessed on 28 Jul 2025].

63. Bodenreider O. Issues in mapping LOINC laboratory tests to SNOMED CT. AMIA Annu Symp Proc. 2008;2008:51-5.

64. LOINC. SNOMED International. Available from: https://loinc.org/collaboration/snomed-international/. [Last accessed on 28 Jul 2025].

65. Wacker J. Measuring and monitoring perioperative patient safety: a basic approach for clinicians. Curr Opin Anaesthesiol. 2020;33:815-22.

66. Fu S, Wen A, Schaeferle GM, et al. Assessment of data quality variability across two EHR systems through a case study of post-surgical complications. AMIA Jt Summits Transl Sci Proc. 2022;2022:196-205.

67. Nyberg A, Jirwe M, Fagerdahl A, Otten V, Haney M, Olofsson B. Perioperative patient safety indicators - a Delphi study. J Clin Nurs. 2025;34:1351-63.

68. Cook H, Aggarwal A, Kanapathy M, Davison E, Ioannidi L. 1009 Improving accuracy and extractability of electronic operative documentation data in a hand trauma unit. Br J Surg. 2023;110:znad258.167.

69. Abraham J, Meng A, Sona C, Wildes T, Avidan M, Kannampallil T. An observational study of postoperative handoff standardization failures. Int J Med Inform. 2021;151:104458.

70. Hofer IS, Cheng D, Grogan T. A retrospective analysis demonstrates that a failure to document key comorbid diseases in the anesthesia preoperative evaluation associates with increased length of stay and mortality. Anesth Analg. 2021;133:698-706.

71. Smith JD, Lemay K, Lee S, et al. Medico-legal issues related to emergency physicians’ documentation in Canadian emergency departments. CJEM. 2023;25:768-75.

72. Li X, Zhan Y, Zhao Y, et al. A perioperative risk assessment dataset with multi-view data based on online accelerated pairwise comparison. Inf Fusion. 2023;99:101838.

73. Lim L, Lee HC. Open datasets in perioperative medicine: a narrative review. Anesth Pain Med. 2023;18:213-9.

74. Mohammed F, Naaz M. Big data analytics: challenges and applications in healthcare. Int J Sci Res. 2023;12:834-8.

75. Pezoulas VC, Fotiadis DI. The pivotal role of data harmonization in revolutionizing global healthcare: a framework and a case study. Conn Health Telemed 2024;3:300004.

76. Oliver M, Allyn J, Carencotte R, Allou N, Ferdynus C. Introducing the BlendedICU dataset, the first harmonized, international intensive care dataset. J Biomed Inform. 2023;146:104502.

77. Zhou B, Zhan Y, Wang Z, et al. Benchmarking medical LLMs on anesthesiology: a comprehensive dataset in Chinese. IEEE Trans Emerg Top Comput Intell. 2025;9:3057-71.

78. Chae D. Data science and machine learning in anesthesiology. Korean J Anesthesiol. 2020;73:285-95.

79. Schwabe D, Becker K, Seyferth M, Klaß A, Schaeffter T. The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review. NPJ Digit Med. 2024;7:203.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/