REFERENCES
1. Nepogodiev D, Martin J, Biccard B, et al. Global burden of postoperative death. The Lancet 2019;393:401.
2. Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008;372:139-44.
3. Birkmeyer JD, Siewers AE, Finlayson EV, et al. Hospital volume and surgical mortality in the United States. N Engl J Med 2002;346:1128-37.
4. Tomašev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019;572:116-9.
5. Muti HS, Heij LR, Keller G, et al. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study. Lancet Digital Health 2021;3:e654-64.
6. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
7. Maier-Hein L, Eisenmann M, Sarikaya D, et al. Surgical data science - from concepts toward clinical translation. Med Image Anal 2022;76:102306.
8. Maier-Hein L, Vedula SS, Speidel S, et al. Surgical data science for next-generation interventions. Nat Biomed Eng 2017;1:691-6.
9. Russell S, Norvig P. Artificial intelligence, global edition. Available from: https://elibrary.pearson.de/book/99.150005/9781292401171 [Last accessed on 14 Apr 2022].
10. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. Journal of Artificial Intelligence Research 1996;4:237.
12. Lecun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation 1989;1:541-51.
13. Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K. Phoneme recognition using time-delay neural networks. IEEE Trans Neural Netw 1989;37:328-39.
14. Ross T, Zimmerer D, Vemuri A, et al. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning. Int J Comput Assist Radiol Surg 2018;13:925-33.
15. Zhai X, Oliver A, Kolesnikov A, Beyer L. S4L: self-supervised semi-supervised learning. Available from: https://arxiv.org/abs/1905.03670 [Last accessed on 14 Apr 2022].
16. Wang Y, Yao Q, Kwok JT, Ni LM. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv 2021;53:1-34.
17. Shrestha A, Mahmood A. Review of deep learning algorithms and architectures. IEEE Access 2019;7:53040-65.
18. Kendall A, Gal Y. What uncertainties do we need in bayesian deep learning for computer vision? Available from: https://papers.nips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html [Last accessed on 14 Apr 2022].
19. Hüllermeier E, Waegeman W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach Learn 2021;110:457-506.
20. Adler TJ, Ardizzone L, Vemuri A, et al. Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks. Int J Comput Assist Radiol Surg 2019;14:997-1007.
21. Ardizzone L, Kruse J, Rother C, Köthe U. Analyzing inverse problems with invertible neural networks. Available from: https://arxiv.org/abs/1808.04730 [Last accessed on 14 Apr 2022].
22. Barredo Arrieta A, Díaz-rodríguez N, Del Ser J, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 2020;58:82-115.
23. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018;268:70-6.
24. Mckinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature 2020;577:89-94.
25. Kudo SE, Ichimasa K, Villard B, et al. Artificial intelligence system to determine risk of T1 colorectal cancer metastasis to lymph node. Gastroenterology 2021;160:1075-1084.e2.
26. Mai RY, Lu HZ, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma. Surgery 2020;168:643-52.
27. Que SJ, Chen QY, Qing-Zhong, et al. Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer. World J Gastroenterol 2019;25:6451-64.
28. Rice TW, Lu M, Ishwaran H, Blackstone EH. Worldwide Esophageal Cancer Collaboration Investigators. Precision surgical therapy for adenocarcinoma of the esophagus and esophagogastric junction. J Thorac Oncol 2019;14:2164-75.
29. Zou FW, Tang YF, Liu CY, Ma JA, Hu CH. Concordance study between IBM watson for oncology and real clinical practice for cervical cancer patients in China: a retrospective analysis. Front Genet 2020;11:200.
30. Powles J, Hodson H. Google deepmind and healthcare in an age of algorithms. Health Technol (Berl) 2017;7:351-67.
31. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA 2013;309:1351-2.
32. Healey T, El-Othmani MM, Healey J, Peterson TC, Saleh KJ. Improving operating room efficiency, part 1: general managerial and preoperative strategies. JBJS Rev 2015;3:e3.
33. Stahl JE, Sandberg WS, Daily B, et al. Reorganizing patient care and workflow in the operating room: a cost-effectiveness study. Surgery 2006;139:717-28.
34. Marjamaa RA, Torkki PM, Hirvensalo EJ, Kirvelä OA. What is the best workflow for an operating room? Health Care Manag Sci 2009;12:142-6.
35. Bercker S, Waschipky R, Hokema F, Brecht W. [Effects of overlapping induction on the utilization of complex operating structures: estimation using the practical application of a simulation model]. Anaesthesist 2013;62:440-6.
36. Souders CP, Catchpole KR, Wood LN, et al. Reducing operating room turnover time for robotic surgery using a motor racing pit stop model. World J Surg 2017;41:1943-9.
37. Tanzi L, Piazzolla P, Vezzetti E. Intraoperative surgery room management: A deep learning perspective. Int J Med Robot 2020;16:1-12.
38. Berthet-Rayne P, Power M, King H, Yang GZ. Hubot: A three state Human-Robot collaborative framework for bimanual surgical tasks based on learned models. Available from: https://ieeexplore.ieee.org/document/7487198 [Last accessed on 14 Apr 2022].
39. Zhao B, Waterman RS, Urman RD, Gabriel RA. A machine learning approach to predicting case duration for robot-assisted surgery. J Med Syst 2019;43:32.
40. Wagner M, Bihlmaier A, Kenngott HG, et al. A learning robot for cognitive camera control in minimally invasive surgery. Surg Endosc 2021;35:5365-74.
41. Katić D, Wekerle AL, Görtler J, et al. Context-aware Augmented Reality in laparoscopic surgery. Comput Med Imaging Graph 2013;37:174-82.
42. Kennedy-Metz LR, Mascagni P, Torralba A, et al. Computer vision in the operating room: opportunities and caveats. IEEE Trans Med Robot Bionics 2021;3:2-10.
43. Garrow CR, Kowalewski KF, Li L, et al. Machine learning for surgical phase recognition: a systematic review. Ann Surg 2021;273:684-93.
44. Hashimoto DA, Rosman G, Volkov M, Rus DL, Meireles OR. Artificial intelligence for intraoperative video analysis: machine learning’s role in surgical education. Journal of the American College of Surgeons 2017;225:4.
45. Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N. EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos. IEEE Trans Med Imaging 2017;36:86-97.
46. Wagner M, Müller-Stich BP, Kisilenko A, et al. Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark. Available from: https://arxiv.org/ftp/arxiv/papers/2109/2109.14956.pdf.
47. Moonesinghe SR, Mythen MG, Das P, Rowan KM, Grocott MP. Risk stratification tools for predicting morbidity and mortality in adult patients undergoing major surgery: qualitative systematic review. Anesthesiology 2013;119:959-81.
48. Suliburk JW, Buck QM, Pirko CJ, et al. Analysis of human performance deficiencies associated with surgical adverse events. JAMA Netw Open 2019;2:e198067.
49. Flin R, Youngson G, Yule S. How do surgeons make intraoperative decisions? Qual Saf Health Care 2007;16:235-9.
50. Glance LG, Osler TM, Neuman MD. Redesigning surgical decision making for high-risk patients. N Engl J Med 2014;370:1379-81.
51. Garg AX, Adhikari NK, McDonald H, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA 2005;293:1223-38.
52. Harangi B, Hajdu A, Lampé R, Torok P. Recognizing ureter and uterine artery in endoscopic images using a convolutional neural network. Available from: https://www.semanticscholar.org/paper/Recognizing-Ureter-and-Uterine-Artery-in-Endoscopic-Harangi-Hajdu/b9956febca47a364eb23b6cc65bccfec06206509 [Last accessed on Apr 2022].
53. Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2020; doi: 10.1097/SLA.0000000000004351.
54. Strasberg SM, Brunt LM. Rationale and use of the critical view of safety in laparoscopic cholecystectomy. J Am Coll Surg 2010;211:132-8.
55. Quellec G, Lamard M, Cazuguel G, et al. Real-time retrieval of similar videos with application to computer-aided retinal surgery. Available from: https://ieeexplore.ieee.org/document/6091107 [Last accessed on 14 Apr 2022].
56. Li Y, Charalampaki P, Liu Y, Yang GZ, Giannarou S. Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data. Int J Comput Assist Radiol Surg 2018;13:1187-99.
57. Halicek M, Little JV, Wang X, et al. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc SPIE Int Soc Opt Eng 2018;10469:104690X.
58. Hou F, Liang Y, Yang Z, et al. Automatic identification of metastatic lymph nodes in OCT images. Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10867/108673G/Automatic-identification-of-metastatic-lymph-nodes-in-OCT-images/10.1117/12.2511588.short?SSO=1 [Last accessed on 14 Apr 2022]
59. Ritschel K, Pechlivanis I, Winter S. Brain tumor classification on intraoperative contrast-enhanced ultrasound. Int J Comput Assist Radiol Surg 2015;10:531-40.
60. Maier-Hein L, Eisenmann M, Sarikaya D, et al. Surgical data science - from concepts toward clinical translation. Available from: https://arxiv.org/abs/2011.02284 [Last accessed on 14 Apr 2022].
61. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA 2017;318:517-8.
62. Safdar NM, Banja JD, Meltzer CC. Ethical considerations in artificial intelligence. Eur J Radiol 2020;122:108768.
63. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2018;2:749-60.
64. Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med 2020;14:369-81.
65. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot 2011;7:375-92.
66. Harris SJ, Arambula-Cosio F, Mei Q, et al. The Probot--an active robot for prostate resection. Proc Inst Mech Eng H 1997;211:317-25.
67. Hutchinson K, Yasar MS, Bhatia H, Alemzadeh H. A reactive autonomous camera system for the RAVEN II surgical robot. Available from: https://arxiv.org/abs/2010.04785 [Last accessed on 14 Apr 2022].
68. Rivas-blanco I, Lopez-casado C, Perez-del-pulgar CJ, Garcia-vacas F, Fraile JC, Munoz VF. Smart cable-driven camera robotic assistant. IEEE Trans Human-Mach Syst 2018;48:183-96.
69. Mayer H, Gomez F, Wierstra D, et al. A System for robotic heart surgery that learns to tie knots using recurrent neural networks. Available from: https://ieeexplore.ieee.org/document/4059310 [Last accessed on 14 Apr 2022].
70. Padoy N, Hager GD. Human-machine collaborative surgery using learned models. Available from: https://ieeexplore.ieee.org/document/5980250 [Last accessed on 14 Apr 2022].
71. Knoll A, Mayer H, Staub C, Bauernschmitt R. Selective automation and skill transfer in medical robotics: a demonstration on surgical knot-tying. Int J Med Robot 2012;8:384-97.
72. van den Berg J, Miller S, Duckworth D, et al. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. Available from: https://ieeexplore.ieee.org/document/5509621 [Last accessed on 14 Apr 2022].
73. Mikada T, Kanno T, Kawase T, Miyazaki T, Kawashima K. Suturing support by human cooperative robot control using deep learning. IEEE Access 2020;8:167739-46.
74. Lu B, Chen W, Jin YM, et al. A learning-driven framework with spatial optimization for surgical suture thread reconstruction and autonomous grasping under multiple topologies and environmental noises. Available from: https://arxiv.org/abs/2007.00920 [Last accessed on 14 Apr 2022].
75. Schwaner KL, Dall’Alba D, Jensen PT, et al. Autonomous needle manipulation for robotic surgical suturing based on skills learned from demonstration. Available from: https://ieeexplore.ieee.org/document/9551569 [Last accessed on 14 Apr 2022].
76. Chiu ZY, Richter F, Funk EK, et al. Bimanual regrasping for suture needles using reinforcement learning for rapid motion planning. Available from: https://arxiv.org/abs/2011.04813 [Last accessed on 14 Apr 2022].
77. Peters JH, Fried GM, Swanstrom LL, et al. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery 2004;135:21-7.
78. Thananjeyan B, Garg A, Krishnan S, et al. Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning. Available from: https://ieeexplore.ieee.org/document/7989275 [Last accessed on 14 Apr 2022].
79. Nguyen ND, Nguyen T, Nahavandi S, et al. Manipulating soft tissues by deep reinforcement learning for autonomous robotic surgery. Available from: https://ieeexplore.ieee.org/document/8836924 [Last accessed on 14 Apr 2022].
80. Pedram SA, Ferguson PW, Shin C, et al. Toward synergic learning for autonomous manipulation of deformable tissues via surgical robots: an approximate q-learning approach. Available from: https://arxiv.org/abs/1910.03398 [Last accessed on 14 Apr 2022].
81. Shin C, Ferguson PW, Pedram SA, et al. Autonomous tissue manipulation via surgical robot using learning based model predictive control. Available from: https://arxiv.org/abs/1902.01459 [Last accessed on 14 Apr 2022].
82. Xu W, Chen J, Lau HYK, Ren H. Automate surgical tasks for a flexible serpentine manipulator via learning actuation space trajectory from demonstration. Available from: https://ieeexplore.ieee.org/document/7487640 [Last accessed on 14 Apr 2022].
83. Barragan JA, Chanci D, Yu D, Wachs JP. SACHETS: semi-autonomous cognitive hybrid emergency teleoperated suction. Available from: https://ieeexplore.ieee.org/document/9515517 [Last accessed on 14 Apr 2022].
84. Nichols KA, Okamura AM. A framework for multilateral manipulation in surgical tasks. IEEE Trans Automat Sci Eng 2016;13:68-77.
85. Kehoe B, Kahn G, Mahler J, et al. Autonomous multilateral debridement with the Raven surgical robot. Available from: http://people.eecs.berkeley.edu/~pabbeel/papers/2014-ICRA-multilateral-ravens.pdf [Last accessed on 14 Apr 2022].
86. Kim JW, Zhang P, Gehlbach P, et al. Towards autonomous eye surgery by combining deep imitation learning with optimal control. Proc Mach Learn Res 2021;155:2347-58.
87. Keller B, Draelos M, Zhou K, et al. Optical coherence tomography-guided robotic ophthalmic microsurgery via reinforcement learning from demonstration. IEEE Trans Robot 2020;36:1207-18.
88. Baek D, Hwang M, Kim H, Kwon D-S. Path planning for automation of surgery robot based on probabilistic roadmap and reinforcement learning. Available from: https://ieeexplore.ieee.org/document/8441801 [Last accessed on 14 Apr 2022].
89. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC. Supervised autonomous robotic soft tissue surgery. Sci Transl Med 2016;8:337ra64.
90. Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci Robot 2022;7:eabj2908.
91. Ning G, Chen J, Zhang X, Liao H. Force-guided autonomous robotic ultrasound scanning control method for soft uncertain environment. Int J Comput Assist Radiol Surg 2021;16:2189-99.