REFERENCES

1. Chen JX. The Evolution of Computing: alphaGo. Comput Sci Eng 2016;18:4-7.

2. Talby D. The current state of the healthcare AI revolution. Available from: https://www.forbes.com/sites/forbestechcouncil/2021/04/28/the-current-state-of-the-healthcare-ai-revolution/?sh=272adbf2980d [Last accessed on 21 Dec 2021].

3. Kersting K. Machine learning and artificial intelligence: two fellow travelers on the quest for intelligent behavior in machines. Front Big Data 2018;1:6.

4. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Markets 2021;31:685-95.

5. van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol 2017;10:23-32.

6. Esteva A, Chou K, Yeung S, et al. Deep learning-enabled medical computer vision. NPJ Digit Med 2021;4:5.

7. Jain A, Kulkarni G, Shah V. Natural language processing. Int J Comput Sci Eng 2018;6:161-7.

8. Mathias B, Lipori G, Moldawer LL, Efron PA. Integrating "big data" into surgical practice. Surgery 2016;159:371-4.

9. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018;268:70-6.

10. Nagano H. Big data, information and communication technology, artificial intelligence, internet of things: how important are they for gastroenterological surgery? Ann Gastroenterol Surg 2018;2:166.

11. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J 2019;6:94-8.

12. Roser M, Ortiz-Ospina E, Ritchie H. Life expectancy. Available from: https://ourworldindata.org/life-expectancy [Last accessed on 21 Dec 2021].

13. Hadley TD, Pettit RW, Malik T, Khoei AA, Salihu HM. Artificial intelligence in global health - a framework and strategy for adoption and sustainability. Int J MCH AIDS 2020;9:121-7.

14. Holzer E, Tschan F, Kottwitz MU, Beldi G, Businger AP, Semmer NK. The workday of hospital surgeons: what they do, what makes them satisfied, and the role of core tasks and administrative tasks; a diary study. BMC Surg 2019;19:112.

15. Liberati EG, Ruggiero F, Galuppo L, et al. What hinders the uptake of computerized decision support systems in hospitals? Implement Sci 2017;12:113.

16. Varghese J. Artificial intelligence in medicine: chances and challenges for wide clinical adoption. Visc Med 2020;36:443-9.

17. Sanders DS, Read-Brown S, Tu DC, et al. Impact of an electronic health record operating room management system in ophthalmology on documentation time, surgical volume, and staffing. JAMA Ophthalmol 2014;132:586-92.

18. Frazee R, Harmon L, Papaconstantinou HT. Surgeons' perspective of a newly initiated electronic medical record. Proc (Bayl Univ Med Cent) 2016;29:21-3.

19. Willyard C. Can AI fix medical records? Nature 2019;576:S59-62.

20. Davenport TH, Hongsermeier TM, Mc Cord KA. Using AI to improve electronic health records. Available from: https://hbr.org/2018/12/using-ai-to-improve-electronic-health-records [Last accessed on 21 Dec 2021].

21. Presti MV. Taking medical coding to the next level with Artificial Intelligence. Available from: https://www.ibm.com/blogs/watson-health/medical-coding-with-ai/ [Last accessed on 21 Dec 2021].

22. Ramalho A, Souza J, Freitas A. .

23. Lin WC, Chen JS, Chiang MF, Hribar MR. Applications of artificial intelligence to electronic health record data in ophthalmology. Transl Vis Sci Technol 2020;9:13.

24. Hawkes N. Cancer survival data emphasise importance of early diagnosis. BMJ 2019;364:l408.

25. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med 2020;3:17.

26. Bau CT, Chen RC, Huang CY. Construction of a clinical decision support system for undergoing surgery based on domain ontology and rules reasoning. Telemed J E Health 2014;20:460-72.

27. Chang AC. . Chapter 7 - clinician cognition and artificial intelligence in medicine. Intelligence-based medicine. Academic Press; 2020.

28. Jones C, Thornton J, Wyatt JC. Enhancing trust in clinical decision support systems: a framework for developers. BMJ Health Care Inform 2021;28:e100247.

29. Khairat S, Marc D, Crosby W, Al Sanousi A. Reasons for physicians not adopting clinical decision support systems: critical analysis. JMIR Med Inform 2018;6:e24.

30. Kawamura H, Morishima T, Sato A, Honda M, Miyashiro I. Effect of adjuvant chemotherapy on survival benefit in stage III colon cancer patients stratified by age: a Japanese real-world cohort study. BMC Cancer 2020;20:19.

31. Boyne DJ, Cuthbert CA, O'Sullivan DE, et al. Association between adjuvant chemotherapy duration and survival among patients with stage II and III colon cancer: a systematic review and meta-analysis. JAMA Netw Open 2019;2:e194154.

32. Brierley J, Gospodarowicz M, O'Sullivan B. The principles of cancer staging. Ecancermedicalscience 2016;10:ed61.

33. Azim HA Jr, de Azambuja E, Colozza M, Bines J, Piccart MJ. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann Oncol 2011;22:1939-47.

34. Galata C, Merx K, Mai S, et al. Impact of adjuvant chemotherapy on patients with ypT0-2 ypN0 rectal cancer after neoadjuvant chemoradiation: a cohort study from a tertiary referral hospital. World J Surg Oncol 2018;16:156.

35. Bera K, Katz I, Madabhushi A. Reimagining t staging through artificial intelligence and machine learning image processing approaches in digital pathology. JCO Clin Cancer Inform 2020;4:1039-50.

36. Dihge L, Ohlsson M, Edén P, Bendahl PO, Rydén L. Artificial neural network models to predict nodal status in clinically node-negative breast cancer. BMC Cancer 2019;19:610.

37. Bedrikovetski S, Dudi-Venkata NN, Kroon HM, et al. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2021;21:1058.

38. Zheng Q, Yang L, Zeng B, et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: a systematic review and meta-analysis. EClinicalMedicine 2021;31:100669.

39. Kunstman JW. Artificial intelligence in cancer staging: limitless potential or passing fad? Ann Surg Oncol 2020;27:978-9.

40. Raymond BL, Wanderer JP, Hawkins AT, et al. Use of the american college of surgeons national surgical quality improvement program surgical risk calculator during preoperative risk discussion: the patient perspective. Anesth Analg 2019;128:643-50.

41. Bann SD, Sarin S. Comparative audit: the trouble with POSSUM. J R Soc Med 2001;94:632-4.

42. Ramesh VJ, Rao GS, Guha A, Thennarasu K. Evaluation of POSSUM and P-POSSUM scoring systems for predicting the mortality in elective neurosurgical patients. Br J Neurosurg 2008;22:275-8.

43. Biccard BM, Rodseth RN. Utility of clinical risk predictors for preoperative cardiovascular risk prediction. Br J Anaesth 2011;107:133-43.

44. Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculator. Ann Surg 2018;268:574-83.

45. Thompson JS, Baxter BT, Allison JG, Johnson FE, Lee KK, Park WY. Temporal patterns of postoperative complications. Arch Surg 2003;138:596-602; discussion 602-3.

46. Stenhouse C, Coates S, Tivey M, Allsop P, Parker T. Prospective evaluation of a modified Early Warning Score to aid earlier detection of patients developing critical illness on a general surgical ward. Br J Anaesth 2000;84:663P.

47. Bian Y, Xiang Y, Tong B, Feng B, Weng X. Artificial intelligence-assisted system in postoperative follow-up of orthopedic patients: exploratory quantitative and qualitative study. J Med Internet Res 2020;22:e16896.

48. Melnyk M, Casey RG, Black P, Koupparis AJ. Enhanced recovery after surgery (ERAS) protocols: time to change practice? Can Urol Assoc J 2011;5:342-8.

49. Ljungqvist O, Scott M, Fearon KC. Enhanced recovery after surgery: a review. JAMA Surg 2017;152:292-8.

50. Amin T, Mobbs RJ, Mostafa N, Sy LW, Choy WJ. Wearable devices for patient monitoring in the early postoperative period: a literature review. Mhealth 2021;7:50.

51. Ward TM, Mascagni P, Ban Y, et al. Computer vision in surgery. Surgery 2021;169:1253-6.

52. Chadebecq F, Vasconcelos F, Mazomenos E, Stoyanov D. Computer vision in the surgical operating room. Visc Med 2020;36:456-62.

53. Garcia-Martinez A, Vicente-Samper JM, Sabater-Navarro JM. Automatic detection of surgical haemorrhage using computer vision. Artif Intell Med 2017;78:55-60.

54. Mascagni P, Vardazaryan A, Alapatt D, et al. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg 2020; doi: 10.1097/SLA.0000000000004351.

55. Attanasio A, Scaglioni B, De Momi E, Fiorini P, Valdastri P. Autonomy in surgical robotics. Annu Rev Control Robot Auton Syst 2021;4:651-79.

56. Leonard S, Wu KL, Kim Y, Krieger A, Kim PC. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng 2014;61:1305-17.

57. Dawson D, Schleiger E, Horton J, et al. Artificial intelligence: Australia’s ethics framework - a discussion paper. Available from: https://apo.org.au/node/229596 [Last accessed on 21 Dec 2021].

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/