REFERENCES

1. Fabelo H, Halicek M, Ortega S, et al. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors (Basel) 2019;19:920.

2. Holmer A, Tetschke F, Marotz J, et al. Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas 2016;37:2064-78.

3. Kulcke A, Holmer A, Wahl P, Siemers F, Wild T, Daeschlein G. A compact hyperspectral camera for measurement of perfusion parameters in medicine. Biomed Tech (Berl) 2018;63:519-27.

4. Ortega S, Fabelo H, Iakovidis DK, Koulaouzidis A, Callico GM. Use of hyperspectral/multispectral imaging in gastroenterology. Shedding some-different-light into the dark. J Clin Med 2019;8:36.

5. Baltussen EJM, Kok END, Brouwer de Koning SG, et al. Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery. J Biomed Opt 2019;24:1-9.

6. Nouri D, Lucas Y, Treuillet S. Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods. Int J Comput Assist Radiol Surg 2016;11:2185-97.

7. Shapey J, Xie Y, Nabavi E, et al. Intraoperative multispectral and hyperspectral label-free imaging: a systematic review of in vivo clinical studies. J Biophotonics 2019;12:e201800455.

8. Zhang Y, Yu S, Zhu X, et al. Explainable liver tumor delineation in surgical specimens using hyperspectral imaging and deep learning. Biomed Opt Express 2021;12:4510.

9. Halicek M, Dormer JD, Little JV, Chen AY, Fei B. Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning. Biomed Opt Express 2020;11:1383-400.

10. Halicek M, Fabelo H, Ortega S, Callico GM, Fei B. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer. Cancers (Basel) 2019;11:756.

11. Schols RM, ter Laan M, Stassen LP, et al. Differentiation between nerve and adipose tissue using wide-band (350-1,830 nm) in vivo diffuse reflectance spectroscopy. Lasers Surg Med 2014;46:538-45.

12. Cooney GS, Barberio M, Diana M, Sucher R, Chalopin C, Köhler H. Comparison of spectral characteristics in human and pig biliary system with hyperspectral imaging (HSI). Current Directions in Biomedical Engineering 2020;6:20200012.

13. Maktabi M, Köhler H, Ivanova M, et al. Classification of hyperspectral endocrine tissue images using support vector machines. Int J Med Robot 2020;16:1-10.

14. Schols RM, Alic L, Wieringa FP, Bouvy ND, Stassen LP. Towards automated spectroscopic tissue classification in thyroid and parathyroid surgery. Int J Med Robot 2017;13:e1748.

15. Signoroni A, Savardi M, Baronio A, Benini S. Deep learning meets hyperspectral image analysis: a multidisciplinary review. J Imaging 2019;5:52.

16. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964;36:1627-39.

17. Chen Y, Jiang H, Li C, Jia X, Ghamisi P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sensing 2016;54:6232-51.

18. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention - MICCAI 2015. Cham: Springer International Publishing; 2015. pp. 234-41.

19. Bokhorst JM, Pinckaers H, van Zwam P, Nagtegaal I, van der Laak J, Ciompi F. Learning from sparsely annotated data for semantic segmentation in histopathology images. In: Cardoso MJ, Feragen A, Glocker B, Konukoglu E, Oguz I, Unal G, editors. London, United Kingdom: PMLR; 2019. pp. 84-91.

20. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011;12:2825-30.

21. Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, Alché-Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.; 2019. pp. 8026-37.

22. Ghamisi P, Plaza J, Chen Y, Li J, Plaza AJ. Advanced spectral classifiers for hyperspectral images: a review. IEEE Geosci Remote Sens Mag 2017;5:8-32.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/