REFERENCES

1. Noba L, Rodgers S, Chandler C, Balfour A, Hariharan D, Yip VS. Enhanced recovery after surgery (ERAS) reduces hospital costs and improve clinical outcomes in liver surgery: a systematic review and meta-analysis. J Gastrointest Surg. 2020;24:918-32.

2. Marvin MR, Buell JF. Laparoscopic liver surgery. Adv Surg. 2009;43:159-73.

3. Filmann N, Walter D, Schadde E, et al. Mortality after liver surgery in Germany. Br J Surg. 2019;106:1523-9.

4. Melloul E, Hübner M, Scott M, et al. Guidelines for perioperative care for liver surgery: enhanced recovery after surgery (ERAS) society recommendations. World J Surg. 2016;40:2425-40.

5. Lim JSH, Shelat VG. 3D laparoscopy and fluorescence imaging can improve surgical precision for hepatectomy. Hepatobiliary Surg Nutr. 2024;13:544-7.

6. Finotti M, D’Amico F, Testa G. The current and future role of robotic surgery in liver surgery and transplantation. Minerva Surg. 2022;77:380-90.

7. Buchs NC, Volonte F, Pugin F, et al. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. J Surg Res. 2013;184:825-31.

8. Tripke V, Sommer N. An update on liver surgery - a new terminology and modern techniques. Innov Surg Sci. 2023;8:197-201.

9. Kang X, Azizian M, Wilson E, et al. Stereoscopic augmented reality for laparoscopic surgery. Surg Endosc. 2014;28:2227-35.

10. Banchini F, Romboli A, Rizzi N, Luzietti E, Conti L, Capelli P. Laparoscopic dorsal subsegmentectomy 8: exploit the 3d technology to plan liver resection, and predict intraparenchymal pedicles. A case report. (With video explanation). Int J Surg Case Rep. 2021;88:106516.

11. Cheng J, Wang Z, Liu J, Dou C, Yao W, Zhang C. Value of 3D printing technology combined with indocyanine green fluorescent navigation in complex laparoscopic hepatectomy. PLoS One. 2022;17:e0272815.

12. Prevost GA, Eigl B, Paolucci I, et al. Efficiency, accuracy and clinical applicability of a new image-guided surgery system in 3D laparoscopic liver surgery. J Gastrointest Surg. 2020;24:2251-8.

13. Gavriilidis P, Edwin B, Pelanis E, et al. Navigated liver surgery: state of the art and future perspectives. Hepatobiliary Pancreat Dis Int. 2022;21:226-33.

14. Berardi G, Colasanti M, Meniconi RL, et al. The applications of 3D imaging and indocyanine green dye fluorescence in laparoscopic liver surgery. Diagnostics. 2021;11:2169.

15. Kasai M, Uchiyama H, Aihara T, Ikuta S, Yamanaka N. Laparoscopic projection mapping of the liver portal segment, based on augmented reality combined with artificial intelligence, for laparoscopic anatomical liver resection. Cureus. 2023;15:e48450.

16. Koo B, Robu MR, Allam M, et al. Automatic, global registration in laparoscopic liver surgery. Int J Comput Assist Radiol Surg. 2022;17:167-76.

17. Labrunie M, Ribeiro M, Mourthadhoi F, et al. Automatic preoperative 3d model registration in laparoscopic liver resection. Int J Comput Assist Radiol Surg. 2022;17:1429-36.

18. Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepatobiliary Pancreat Sci. 2011;18:506-9.

19. Oshiro Y, Ohkohchi N. Three-dimensional liver surgery simulation: computer-assisted surgical planning with three-dimensional simulation software and three-dimensional printing. Tissue Eng Part A. 2017;23:474-80.

20. Saito Y, Shimada M, Morine Y, Yamada S, Sugimoto M. Essential updates 2020/2021: current topics of simulation and navigation in hepatectomy. Ann Gastroenterol Surg. 2022;6:190-6.

21. Pelanis E, Teatini A, Eigl B, et al. Evaluation of a novel navigation platform for laparoscopic liver surgery with organ deformation compensation using injected fiducials. Med Image Anal. 2021;69:101946.

22. Zhang P, Luo H, Zhu W, et al. Real-time navigation for laparoscopic hepatectomy using image fusion of preoperative 3D surgical plan and intraoperative indocyanine green fluorescence imaging. Surg Endosc. 2020;34:3449-59.

23. Luo H, Yin D, Zhang S, et al. Augmented reality navigation for liver resection with a stereoscopic laparoscope. Comput Methods Programs Biomed. 2020;187:105099.

24. Shen L, Zhao W, Xing L. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat Biomed Eng. 2019;3:880-8.

25. Ying X, Guo H, Ma K, Wu J, Weng Z, Zheng Y. X2CT-GAN: reconstructing CT from biplanar X-Rays with generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, USA. IEEE; 2019. pp. 10611-20.

26. Shao HC, Wang J, Bai T, et al. Real-time liver tumor localization via a single x-ray projection using deep graph neural network-assisted biomechanical modeling. Phys Med Biol. 2022;67:115009.

27. Shao HC, Huang X, Folkert MR, Wang J, Zhang Y. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio). Med Phys. 2021;48:7790-805.

28. Wang B, Yang J, Ai J, et al. Accurate tumor segmentation via octave convolution neural network. Front Med. 2021;8:653913.

29. Lu Y, Chen X, Han F, et al. 3D printing of self-healing personalized liver models for surgical training and preoperative planning. Nat Commun. 2023;14:8447.

30. Oh N, Kim JH, Rhu J, et al. Automated 3D liver segmentation from hepatobiliary phase MRI for enhanced preoperative planning. Sci Rep. 2023;13:17605.

31. Lopez-Lopez V, Gomez-Perez B, de Vicente E, et al. Next-generation three-dimensional modelling software for personalized surgery decision-making in perihilar cholangiocarcinoma: multicentre study. Br J Surg. 2021;108:e394-5.

32. Lv A, Li Y, Qian HG, Qiu H, Hao CY. Precise navigation of the surgical plane with intraoperative real-time virtual sonography and 3D simulation in liver resection. J Gastrointest Surg. 2018;22:1814-8.

33. Wu T, Huang W, He B, et al. Diagnostic accuracy of 3D imaging combined with intra-operative ultrasound in the prediction of post-hepatectomy liver failure. J Gastrointest Oncol. 2022;13:1224-36.

34. Cui DP, Fan S, Guo YX, Zhao QW, Qiao YX, Fei JD. Accurate resection of hilar cholangiocarcinoma using eOrganmap 3D reconstruction and full quantization technique. World J Gastrointest Surg. 2023;15:1693-702.

35. Yang HY, Rho SY, Han DH, Choi JS, Choi GH. Robotic major liver resections: surgical outcomes compared with open major liver resections. Ann Hepatobiliary Pancreat Surg. 2021;25:8-17.

36. Society Of Digital Medicine Chinese; Cancer Committee Of Chinese Medical Doctor Association Liver; Precision Medicine Committee Of Chinese Medical Doctor Association Clinical; Intelligent Surgery Committee Of Chinese Research Hospital Association Digital. [Clinical practice guidelines for precision diagnosis and treatment of complex liver tumor guided by three-dimensional visualization technology (version 2019)]. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40:297-307. (in Chinese).

37. Fang CH, Liang HB, Chi CW, et al. [Application of indocyanine green-fluorescent imaging technique in planning resection line and real-time surgical navigation in small hepatocellular carcinoma]. Zhonghua Wai Ke Za Zhi. 2016;54:444-50. (in Chinese).

38. Fang CH, Zhang P, Lau YY, Zhong SZ. [Construction and application of the core technology system of digital intelligent diagnostic and treatment for hepato-biliary-pancreatic diseases]. Zhonghua Wai Ke Za Zhi. 2019;57:253-7. (in Chinese).

39. Arizumi T, Ueshima K, Minami T, et al. Effectiveness of sorafenib in patients with transcatheter arterial chemoembolization (TACE) refractory and intermediate-stage hepatocellular carcinoma. Liver Cancer. 2015;4:253-62.

40. Giannone F, Felli E, Cherkaoui Z, Mascagni P, Pessaux P. Augmented reality and image-guided robotic liver surgery. Cancers. 2021;13:6268.

41. Vasey B, Lippert KAN, Khan DZ, et al. Intraoperative applications of artificial intelligence in robotic surgery: a scoping review of current development stages and levels of autonomy. Ann Surg. 2023;278:896-903.

42. Knudsen JE, Ghaffar U, Ma R, Hung AJ. Clinical applications of artificial intelligence in robotic surgery. J Robot Surg. 2024;18:102.

43. Pesi B, Moraldi L, Guerra F, et al. Surgical and oncological outcomes after ultrasound-guided robotic liver resections for malignant tumor. Analysis of a prospective database. Int J Med Robot. 2019;15:e2002.

44. Spiegelberg J, Iken T, Diener MK, Fichtner-Feigl S. Robotic-assisted surgery for primary hepatobiliary tumors-possibilities and limitations. Cancers. 2022;14:265.

45. Daskalaki D, Gonzalez-Heredia R, Brown M, et al. Financial impact of the robotic approach in liver surgery: a comparative study of clinical outcomes and costs between the robotic and open technique in a single institution. J Laparoendosc Adv Surg Tech A. 2017;27:375-82.

46. Fong Y, Buell JF, Collins J, et al. Applying the Delphi process for development of a hepatopancreaticobiliary robotic surgery training curriculum. Surg Endosc. 2020;34:4233-44.

47. Boal MWE, Anastasiou D, Tesfai F, et al. Evaluation of objective tools and artificial intelligence in robotic surgery technical skills assessment: a systematic review. Br J Surg. 2024;111:znad331.

48. Lim C, Goumard C, Salloum C, et al. Outcomes after 3D laparoscopic and robotic liver resection for hepatocellular carcinoma: a multicenter comparative study. Surg Endosc. 2021;35:3258-66.

49. Hawksworth J, Llore N, Holzner ML, et al. Robotic hepatectomy is a safe and cost-effective alternative to conventional open hepatectomy: a single-center preliminary experience. J Gastrointest Surg. 2021;25:825-8.

50. Kamel MK, Tuma F, Keane CA, Blebea J. National trends and perioperative outcomes of robotic-assisted hepatectomy in the USA: a propensity-score matched analysis from the national cancer database. World J Surg. 2022;46:189-96.

51. Njei B, Kanmounye US, Seto N, et al. Artificial intelligence in medical imaging for cholangiocarcinoma diagnosis: a systematic review with scientometric analysis. J Gastroenterol Hepatol. 2023;38:874-82.

Mini-invasive Surgery
ISSN 2574-1225 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/