REFERENCES

1. Bellini V, Valente M, Del Rio P, Bignami E. Artificial intelligence in thoracic surgery: a narrative review. J Thorac Dis. 2021;13:6963-75.

2. Seastedt KP, Moukheiber D, Mahindre SA, et al. A scoping review of artificial intelligence applications in thoracic surgery. Eur J Cardiothorac Surg. 2022;61:239-48.

3. Zhang YH, Guo LJ, Yuan XL, Hu B. Artificial intelligence-assisted esophageal cancer management: now and future. World J Gastroenterol. 2020;26:5256-71.

4. Kröner PT, Engels MM, Glicksberg BS, et al. Artificial intelligence in gastroenterology: a state-of-the-art review. World J Gastroenterol. 2021;27:6794-824.

5. Patel A, Arora GS, Roknsharifi M, Kaur P, Javed H. Artificial intelligence in the detection of Barrett’s esophagus: a systematic review. Cureus. 2023;15:e47755.

6. Meinikheim M, Messmann H, Ebigbo A. Role of artificial intelligence in diagnosing Barrett’s esophagus-related neoplasia. Clin Endosc. 2023;56:14-22.

7. de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: the development of a computer-aided detection system to improve detection of Barrett’s neoplasia on white light endoscopy. United European Gastroenterol J. 2019;7:538-47.

8. Fockens KN, Jukema JB, Boers T, et al. Towards a robust and compact deep learning system for primary detection of early Barrett’s neoplasia: initial image-based results of training on a multi-center retrospectively collected data set. United European Gastroenterol J. 2023;11:324-36.

9. Abdelrahim M, Saiko M, Maeda N, et al. Development and validation of artificial neural networks model for detection of Barrett’s neoplasia: a multicenter pragmatic nonrandomized trial (with video). Gastrointest Endosc. 2023;97:422-34.

10. Hussein M, González-Bueno Puyal J, Lines D, et al. A new artificial intelligence system successfully detects and localises early neoplasia in Barrett’s esophagus by using convolutional neural networks. United European Gastroenterol J. 2022;10:528-37.

11. Faghani S, Codipilly DC, David Vogelsang, et al. Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett’s esophagus. Gastrointest Endosc. 2022;96:918-25.e3.

12. Guleria S, Shah TU, Pulido JV, et al. Deep learning systems detect dysplasia with human-like accuracy using histopathology and probe-based confocal laser endomicroscopy. Sci Rep. 2021;11:5086.

13. Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol. 2021;36:131-6.

14. Wu L, Zhang J, Zhou W, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut. 2019;68:2161-9.

15. Duits LC, Khoshiwal AM, Frei NF, et al; Barrett’s SURF LGD Study Pathologists Consortium. An automated tissue systems pathology test can standardize the management and improve health outcomes for patients with Barrett’s esophagus. Am J Gastroenterol. 2023;118:2025-32.

16. Rice TW, Lu M, Ishwaran H, Blackstone EH; Worldwide Esophageal Cancer Collaboration Investigators. Precision surgical therapy for adenocarcinoma of the esophagus and esophagogastric junction. J Thorac Oncol. 2019;14:2164-75.

17. Sato F, Shimada Y, Selaru FM, et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer. 2005;103:1596-605.

18. Warnecke-Eberz U, Metzger R, Bollschweiler E, et al. TaqMan low-density arrays and analysis by artificial neuronal networks predict response to neoadjuvant chemoradiation in esophageal cancer. Pharmacogenomics. 2010;11:55-64.

19. Ypsilantis PP, Siddique M, Sohn HM, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One. 2015;10:e0137036.

20. Gupta A, Singla T, Chennatt JJ, David LE, Ahmed SS, Rajput D. Artificial intelligence: a new tool in surgeon’s hand. J Educ Health Promot. 2022;11:93.

21. Anteby R, Horesh N, Soffer S, et al. Deep learning visual analysis in laparoscopic surgery: a systematic review and diagnostic test accuracy meta-analysis. Surg Endosc. 2021;35:1521-33.

22. den Boer RB, Jaspers TJM, de Jongh C, et al. Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy. Surg Endosc. 2023;37:5164-75.

23. Sato K, Fujita T, Matsuzaki H, et al. Real-time detection of the recurrent laryngeal nerve in thoracoscopic esophagectomy using artificial intelligence. Surg Endosc. 2022;36:5531-9.

24. Takeuchi M, Kawakubo H, Saito K, et al. Automated surgical-phase recognition for robot-assisted minimally invasive esophagectomy using artificial intelligence. Ann Surg Oncol. 2022;29:6847-55.

25. Zhao Z, Cheng X, Sun X, Ma S, Feng H, Zhao L. Prediction model of anastomotic leakage among esophageal cancer patients after receiving an esophagectomy: machine learning approach. JMIR Med Inform. 2021;9:e27110.

26. van de Beld JJ, Crull D, Mikhal J, et al. Complication prediction after esophagectomy with machine learning. Diagnostics. 2024;14:439.

27. Bolourani S, Tayebi MA, Diao L, et al. Using machine learning to predict early readmission following esophagectomy. J Thorac Cardiovasc Surg. 2021;161:1926-39.e8.

28. Jung JO, Pisula JI, Bozek K, et al. Prediction of postoperative complications after oesophagectomy using machine-learning methods. Br J Surg. 2023;110:1361-6.

Mini-invasive Surgery
ISSN 2574-1225 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/