REFERENCES

1. Link RE, Bhayani SB, Allaf ME, et al. Exploring the learning curve, pathological outcomes and perioperative morbidity of laparoscopic partial nephrectomy performed for renal mass. J Urol 2005;173:1690-4.

2. Gill IS, Kamoi K, Aron M, Desai MM. 800 Laparoscopic partial nephrectomies: a single surgeon series. J Urol 2010;183:34-41.

3. Hanzly M, Frederick A, Creighton T, et al. Learning curves for robot-assisted and laparoscopic partial nephrectomy. J Endourol 2015;29:297-303.

4. Patel HD, Mullins JK, Pierorazio PM, et al. Trends in renal surgery: robotic technology is associated with increased use of partial nephrectomy. J Urol 2013;189:1229-35.

5. Alameddine M, Koru-Sengul T, Moore KJ, et al. Trends in utilization of robotic and open partial nephrectomy for management of cT1 renal masses. Eur Urol Focus 2019;5:482-7.

6. Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot 2014;10:379-84.

7. Stegemann AP, Ahmed K, Syed JR, et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology 2013;81:767-74.

8. Ahmed K, Khan R, Mottrie A, et al. Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int 2015;116:93-101.

9. Raison N, Gavazzi A, Abe T, Ahmed K, Dasgupta P. Virtually competent: a comparative analysis of virtual reality and dry-lab robotic simulation training. J Endourol 2020;34:379-84.

10. Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 2002;236:458-64.

11. Chow AK, Wong R, Monda S, et al. Ex vivo porcine model for robot-assisted partial nephrectomy simulation at a high-volume tertiary center: resident perception and validation assessment using the global evaluative assessment of robotic skills tool. J Endourol 2021;35:878-84.

12. Dawe SR, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, Maddern GJ. A systematic review of surgical skills transfer after simulation-based training: laparoscopic cholecystectomy and endoscopy. Ann Surg 2014;259:236-48.

13. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.

14. Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol 2012;187:247-52.

15. Vassiliou MC, Feldman LS, Andrew CG, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 2005;190:107-13.

16. Hidalgo J, Belani J, Maxwell K, et al. Development of exophytic tumor model for laparoscopic partial nephrectomy: technique and initial experience. Urology 2005;65:872-6.

17. Yang B, Zhang ZS, Xiao L, Wang LH, Xu CL, Sun YH. A novel training model for retroperitoneal laparoscopic dismembered pyeloplasty. J Endourol 2010;24:1345-9.

18. Hung AJ, Ng CK, Patil MB, et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int 2012;110:870-4.

19. Monda SM, Weese JR, Anderson BG, et al. Development and validity of a silicone renal tumor model for robotic partial nephrectomy training. Urology 2018;114:114-20.

20. Fernandez A, Chen E, Moore J, et al. First prize: a phantom model as a teaching modality for laparoscopic partial nephrectomy. J Endourol 2012;26:1-5.

21. Ghazi A, Melnyk R, Hung AJ, et al. Multi-institutional validation of a perfused robot-assisted partial nephrectomy procedural simulation platform utilizing clinically relevant objective metrics of simulators (CROMS). BJU Int 2021;127:645-53.

22. Hongo F, Fujihara A, Inoue Y, Yamada Y, Ukimura O. Three-dimensional-printed soft kidney model for surgical simulation of robot-assisted partial nephrectomy: a proof-of-concept study. Int J Urol 2021;28:870-1.

23. Vitagliano G, Mey L, Rico L, Birkner S, Ringa M, Biancucci M. Construction of a 3D surgical model for minimally invasive partial nephrectomy: the urotrainer VK-1. Curr Urol Rep 2021;22:48.

24. Melnyk R, Ezzat B, Belfast E, et al. Mechanical and functional validation of a perfused, robot-assisted partial nephrectomy simulation platform using a combination of 3D printing and hydrogel casting. World J Urol 2020;38:1631-41.

25. Golab A, Smektala T, Kaczmarek K, Stamirowski R, Hrab M, Slojewski M. Laparoscopic partial nephrectomy supported by training involving personalized silicone replica poured in three-dimensional printed casting mold. J Laparoendosc Adv Surg Tech A 2017;27:420-2.

26. Maddox MM, Feibus A, Liu J, Wang J, Thomas R, Silberstein JL. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. J Robot Surg 2018;12:27-33.

27. von Rundstedt FC, Scovell JM, Agrawal S, Zaneveld J, Link RE. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU Int 2017;119:598-604.

28. Glybochko PV, Rapoport LM, Alyaev YG, et al. Multiple application of three-dimensional soft kidney models with localized kidney cancer: a pilot study. Urologia 2018;85:99-105.

29. Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol 2015;194:520-6.

30. Makiyama K, Yamanaka H, Ueno D, et al. Validation of a patient-specific simulator for laparoscopic renal surgery. Int J Urol 2015;22:572-6.

31. Centre for Evidence-Based Medicine. OCEBM levels of evidence. Available from: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence. [Last accessed on 20 Nov 2023].

32. Yang B, Zeng Q, Yinghao S, et al. A novel training model for laparoscopic partial nephrectomy using porcine kidney. J Endourol 2009;23:2029-33.

33. Ohtake S, Makiyama K, Yamashita D, Tatenuma T, Yamanaka H, Yao M. Validation of a kidney model made of N-composite gel as a training tool for laparoscopic partial nephrectomy. Int J Urol 2020;27:567-8.

34. Gallagher AG, O’Sullivan GC. Fundamentals of surgical simulation. London: Springer; 2012. Available from: https://link.springer.com/book/10.1007/978-0-85729-763-1. [Last accessed on 20 Nov 2023].

35. Makiyama K, Tatenuma T, Ohtake S, Suzuki A, Muraoka K, Yao M. Clinical use of a patient-specific simulator for patients who were scheduled for robot-assisted laparoscopic partial nephrectomy. Int J Urol 2021;28:130-2.

36. Kane MT. Validation. In: Brennan RL, editor. Educational measurement. 4th ed. Praeger; 2006. p. 17-64. Available from: https://eric.ed.gov/?id=ED493398.[Last accessed on 24 Nov 2023]

37. Salas E, Bowers CA, Rhodenizer L. It is not how much you have but how you use it: toward a rational use of simulation to support aviation training. Int J Aviat Psychol 1998;8:197-208.

38. Satava RM. Virtual reality surgical simulator. The first steps. Surg Endosc 1993;7:203-5.

39. Mazzone E, Puliatti S, Amato M, et al. A systematic review and meta-analysis on the impact of proficiency-based progression simulation training on performance outcomes. Ann Surg 2021;274:281-9.

40. Maan ZN, Maan IN, Darzi AW, Aggarwal R. Systematic review of predictors of surgical performance. Br J Surg 2012;99:1610-21.

41. Louangrath PI, Sutanapong C. Validity and reliability of survey scales. Int J Res Methodol Soc Sci 2018;4:99-114.

42. Messick S. Validity. In: Linn RL, editor. Educational measurement. 3rd ed. American Council on Education and Macmillan; 1989. p. 13-104. Available from: https://eric.ed.gov/?id=ED372105.[Last accessed on 24 Nov 2023]

43. Cronbach LJ, Meehl PE. Construct validity in psychological tests. Psychol Bull 1955;52:281-302.

Mini-invasive Surgery
ISSN 2574-1225 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/