REFERENCES
1. Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology Guidelines on Renal Cell Carcinoma: the 2022 update. Eur Urol 2022;82:399-410.
2. Bertolo R, Bove P, Sandri M, et al; AGILE Group (Italian Group for Advanced Laparoendoscopic Surgery). Randomized clinical trial comparing on-clamp versus off-clamp laparoscopic partial nephrectomy for small renal masses (CLOCK II Laparoscopic Study): a intention-to-treat analysis of perioperative outcomes. Eur Urol Open Sci 2022;46:75-81.
3. Bravi CA, Larcher A, Capitanio U, et al. Perioperative outcomes of open, laparoscopic, and robotic partial nephrectomy: a prospective multicenter observational study (The RECORd 2 Project). Eur Urol Focus 2021;7:390-6.
4. Wake N, Bjurlin MA, Rostami P, Chandarana H, Huang WC. Three-dimensional printing and augmented reality: enhanced precision for robotic assisted partial nephrectomy. Urology 2018;116:227-8.
5. Porpiglia F, Amparore D, Checcucci E, et al; for ESUT Research Group. Current use of three-dimensional model technology in urology: a road map for personalised surgical planning. Eur Urol Focus 2018;4:652-6.
6. Porpiglia F, Checcucci E, Amparore D, et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA ≥ 10): a new intraoperative tool overcoming the ultrasound guidance. Eur Urol 2020;78:229-38.
7. Bertolo R, Autorino R, Fiori C, et al. Expanding the indications of robotic partial nephrectomy for highly complex renal tumors: urologists’ perception of the impact of hyperaccuracy three-dimensional reconstruction. J Laparoendosc Adv Surg Tech A 2019;29:233-9.
8. Checcucci E, Amparore D, Pecoraro A, et al. 3D mixed reality holograms for preoperative surgical planning of nephron-sparing surgery: evaluation of surgeons’ perception. Minerva Urol Nephrol 2021;73:367-75.
9. Porpiglia F, Amparore D, Checcucci E, et al. Three-dimensional virtual imaging of renal tumours: a new tool to improve the accuracy of nephrometry scores. BJU Int 2019;124:945-54.
10. Minervini A, Campi R, Lane BR, et al. Impact of resection technique on perioperative outcomes and surgical margins after partial nephrectomy for localized renal masses: a prospective multicenter study. J Urol 2020;203:496-504.
11. Pecoraro A, Amparore D, Checcucci E, et al. Three-dimensional virtual models assistance predicts higher rates of “successful” minimally invasive partial nephrectomy: an institutional analysis across the available trifecta definitions. World J Urol 2023;41:1093-100.
12. Amparore D, Checcucci E, Piazzolla P, et al. Indocyanine green drives computer vision based 3D augmented reality robot assisted partial nephrectomy: the beginning of “automatic” overlapping era. Urology 2022;164:e312-6.
13. Diana P, Buffi NM, Lughezzani G, et al. The role of intraoperative indocyanine green in robot-assisted partial nephrectomy: results from a large, multi-institutional series. Eur Urol 2020;78:743-9.
14. Shirk JD, Thiel DD, Wallen EM, et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes: a randomized clinical trial. JAMA Netw Open 2019;2:e1911598.
15. Porpiglia F, Bertolo R, Checcucci E, et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 2018;36:201-7.
16. Checcucci E, Piazza P, Micali S, et al; Uro-technology, SoMe Working Group of the Young Academic Urologists of the European Association of Urology. Three-dimensional model reconstruction: the need for standardization to drive tailored surgery. Eur Urol 2022;81:129-31.
17. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur Urol 2018;74:651-60.
18. Checcucci E, Piramide F, De Cillis S, et al. Health Information Technology Usability Evaluation Scale (Health-ITUES) and User-Experience Questionnaire (UEQ) for 3D intraoperative cognitive navigation (ICON3DTM) system for urological procedures. Medicina 2023;59:624.
19. Smith B, Dasgupta P. 3D printing technology and its role in urological training. World J Urol 2020;38:2385-91.
20. Knoedler M, Feibus AH, Lange A, et al. Individualized physical 3-dimensional kidney tumor models constructed from 3-dimensional printers result in improved trainee anatomic understanding. Urology 2015;85:1257-61.
21. Bernhard JC, Isotani S, Matsugasumi T, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol 2016;34:337-45.
22. Rai A, Scovell JM, Xu A, et al. Patient-specific virtual simulation - a state of the art approach to teach renal tumor localization. Urology 2018;120:42-8.
23. Piramide F, Kowalewski KF, Cacciamani G, et al; European Association of Urology Young Academic Urologists and the European Section of Uro-Technology. Three-dimensional model-assisted minimally invasive partial nephrectomy: a systematic review with meta-analysis of comparative studies. Eur Urol Oncol 2022;5:640-50.
24. Wang C, Roth HR, Kitasaka T, et al. Precise estimation of renal vascular dominant regions using spatially aware fully convolutional networks, tensor-cut and Voronoi diagrams. Comput Med Imaging Graph 2019;77:101642.
25. Amparore D, Piramide F, Checcucci E, et al. Three-dimensional virtual models of the kidney with colored perfusion regions: a new algorithm-based tool for optimizing the clamping strategy during robot-assisted partial nephrectomy. Eur Urol 2023;84:418-25.
26. Bertolo R, Pecoraro A, Carbonara U, et al; European Association of Urology Young Academic Urologists Renal Cancer Working Group. Resection techniques during robotic partial nephrectomy: a systematic review. Eur Urol Open Sci 2023;52:7-21.
27. Minervini A, Carini M. Tumor enucleation is appropriate during partial nephrectomy. Eur Urol Focus 2019;5:923-4.
28. Di Maida F, Campi R, Lane BR, et al. Predictors of positive surgical margins after robot-assisted partial nephrectomy for localized renal tumors: insights from a large multicenter international prospective observational project (the surface-intermediate-base margin score consortium). J Clin Med 2022;11:1765.
29. Amparore D, Pecoraro A, Checcucci E, et al. Three-dimensional virtual models’ assistance during minimally invasive partial nephrectomy minimizes the impairment of kidney function. Eur Urol Oncol 2022;5:104-8.
30. Crocerossa F, Fiori C, Capitanio U, et al. Estimated glomerular filtration rate decline at 1 year after minimally invasive partial nephrectomy: a multimodel comparison of predictors. Eur Urol Open Sci 2022;38:52-9.
31. Pandolfo SD, Cerrato C, Wu Z, et al. A systematic review of robot-assisted partial nephrectomy outcomes for advanced indications: large tumors (cT2-T3), solitary kidney, completely endophytic, hilar, recurrent, and multiple renal tumors. Asian J Urol 2023;10:390-406.
32. Checcucci E, Amparore D, Volpi G, Porpiglia F. A snapshot into the future of image-guided surgery for renal cancer. Asian J Urol 2022;9:201-3.
33. Puliatti S, Eissa A, Checcucci E, et al. New imaging technologies for robotic kidney cancer surgery. Asian J Urol 2022;9:253-62.
34. Malkoc E, Ramirez D, Kara O, et al. Robotic and open partial nephrectomy for localized renal tumors larger than 7 cm: a single-center experience. World J Urol 2017;35:781-7.
35. Hillyer SP, Bhayani SB, Allaf ME, et al. Robotic partial nephrectomy for solitary kidney: a multi-institutional analysis. Urology 2013;81:93-7.
36. Zargar H, Bhayani S, Allaf ME, et al. Comparison of perioperative outcomes of robot-assisted partial nephrectomy and open partial nephrectomy in patients with a solitary kidney. J Endourol 2014;28:1224-30.
37. Komninos C, Shin TY, Tuliao P, et al. Robotic partial nephrectomy for completely endophytic renal tumors: complications and functional and oncologic outcomes during a 4-year median period of follow-up. Urology 2014;84:1367-73.
38. Campi R, Sessa F, Rivetti A, et al. Case report: optimizing pre- and intraoperative planning with hyperaccuracy three-dimensional virtual models for a challenging case of robotic partial nephrectomy for two complex renal masses in a horseshoe kidney. Front Surg 2021;8:665328.
39. De Backer P, Van Praet C, Simoens J, et al. Improving augmented reality through deep learning: real-time instrument delineation in robotic renal surgery. Eur Urol 2023;84:86-91.