REFERENCES

1. Mottet N, Cornford P, van den Bergh RCN, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. 2022. Available from: https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-EANM-ESTRO-ESUR-ISUP_SIOG-Guidelines-on-Prostate-Cancer-2022.pdf [Last accessed on 15 Sep 2022].

2. Schiavina R, Bianchi L, Borghesi M, et al. MRI displays the prostatic cancer anatomy and improves the bundles management before robot-assisted radical prostatectomy. J Endourol 2018;32:315-21.

3. Zhang L, Wu B, Zha Z, et al. Surgical margin status and its impact on prostate cancer prognosis after radical prostatectomy: a meta-analysis. World J Urol 2018;36:1803-15.

4. Bianchi L, Chessa F, Angiolini A, et al. The Use of augmented reality to guide the intraoperative frozen section during robot-assisted radical prostatectomy. Eur Urol 2021;80:480-8.

5. Samei G, Tsang K, Kesch C, et al. A partial augmented reality system with live ultrasound and registered preoperative MRI for guiding robot-assisted radical prostatectomy. Med Image Anal 2020;60:101588.

6. Autorino R, Porpiglia F. Robotic surgery in urology: the way forward. World J Urol 2020;38:809-11.

7. Knipper S, Graefen M. Robot-assisted radical prostatectomy-so successful because it is better or better because it is so successful? Eur Urol Oncol 2018;1:361-3.

8. Mazzone E, Mistretta FA, Knipper S, et al. Contemporary national assessment of robot-assisted surgery rates and total hospital charges for major surgical Uro-oncological procedures in the United States. J Endourol 2019;33:438-47.

9. Leow JJ, Chang SL, Meyer CP, et al. Robot-assisted versus open radical prostatectomy: a contemporary analysis of an all-payer discharge database. Eur Urol 2016;70:837-45.

10. Moreno-Sierra J, Galante-Romo MI, Senovilla-Perez JL, et al. Oncologic outcomes in 408 consecutive patient cohort treated with da Vinci robot-assisted radical prostatectomy. Actas Urol Esp (Engl Ed) 2020;44:179-86.

11. Sierra JM. Robotic radical prostatectomy in the 21 st century: evolution of experience. MRAJ 2021:9.

12. Martini A, Wagaskar VG, Dell’Oglio P, et al. Image guidance in robot-assisted radical prostatectomy: how far do we stand? Curr Opin Urol 2019;29:10-3.

13. Rocco B, Sarchi L, Assumma S, et al. Digital frozen sections with fluorescence confocal microscopy during robot-assisted radical prostatectomy: surgical technique. Eur Urol 2021;80:724-9.

14. Makary J, van Diepen DC, Arianayagam R, et al. The evolution of image guidance in robotic-assisted laparoscopic prostatectomy (RALP): a glimpse into the future. J Robot Surg 2022;16:765-74.

15. Schiavina R, Bianchi L, Lodi S, et al. Real-time augmented reality three-dimensional guided robotic radical prostatectomy: preliminary experience and evaluation of the impact on surgical planning. Eur Urol Focus 2021;7:1260-7.

16. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology 2018;115:184.

17. Cacciamani GE, Okhunov Z, Meneses AD, et al. Impact of three-dimensional printing in urology: state of the art and future perspectives. A systematic review by ESUT-YAUWP group. Eur Urol 2019;76:209-21.

18. Wang S, Frisbie J, Keepers Z, et al. The use of three-dimensional visualization techniques for prostate procedures: a systematic review. Eur Urol Focus 2021;7:1274-86.

19. Ukimura O, Aron M, Nakamoto M, et al. Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol 2014;28:625-30.

20. Shin T, Ukimura O, Gill IS. Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol 2016;69:377-9.

21. Jomoto W, Tanooka M, Doi H, et al. Development of a three-dimensional surgical navigation system with magnetic resonance angiography and a three-dimensional printer for robot-assisted radical prostatectomy. Cureus 2018;10:e2018.

22. Chandak P, Byrne N, Lynch H, et al. Three-dimensional printing in robot-assisted radical prostatectomy - an idea, development, exploration, assessment, long-term follow-up (IDEAL) phase 2a study. BJU Int 2018;122:360-1.

23. Checcucci E, Pecoraro A, Amparore D, et al. Uro-technology and SoMe Working Group of the Young Academic Urologists Working Party of the European Association of Urology. The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy. World J Urol 2022;40:2221-9.

24. Ebbing J, Jäderling F, Collins JW, et al. Comparison of 3D printed prostate models with standard radiological information to aid understanding of the precise location of prostate cancer: a construct validation study. PLoS One 2018;13:e0199477.

25. Porpiglia F, Bertolo R, Checcucci E, et al. ESUT Research Group. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 2018;36:201-7.

26. Wake N, Rosenkrantz AB, Huang R, et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Print Med 2019;5:4.

27. Saba P, Melnyk R, Holler T, et al. Comparison of multi-parametric MRI of the prostate to 3D prostate computer aided designs and 3D-printed prostate models for pre-operative planning of radical prostatectomies: a pilot study. Urology 2021;158:150-5.

28. Cipollari S, Jamshidi N, Du L, et al. Tissue clearing techniques for three-dimensional optical imaging of intact human prostate and correlations with multi-parametric MRI. Prostate 2021;81:1450.

29. Roberts S, Desai A, Checcucci E, et al. “Augmented reality” applications in urology: a systematic review. Minerva Urol Nephrol 2022; doi: 10.23736/S2724-6051.22.04726-7.

30. Ukimura O, Gill IS. Imaging-assisted endoscopic surgery: cleveland Clinic experience. J Endourol 2008;22:803-10.

31. Simpfendörfer T, Baumhauer M, Müller M, et al. Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 2011;25:1841-5.

32. Porpiglia F, Checcucci E, Amparore D, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int 2019;123:834-45.

33. Porpiglia F, Checcucci E, Amparore D, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol 2019;76:505-14.

34. Kalia M, Avinash A, Navab N, Salcudean S. Preclinical evaluation of a markerless, real-time, augmented reality guidance system for robot-assisted radical prostatectomy. Int J Comput Assist Radiol Surg 2021;16:1181-8.

35. Borgmann H, Rodríguez Socarrás M, Salem J, et al. Feasibility and safety of augmented reality-assisted urological surgery using smartglass. World J Urol 2017;35:967-72.

36. Shee K, Koo K, Wu X, Ghali FM, Halter RJ, Hyams ES. A novel ex vivo trainer for robotic vesicourethral anastomosis. J Robot Surg 2020;14:21-7.

37. Harrison P, Raison N, Abe T, et al. The validation of a novel robot-assisted radical prostatectomy virtual reality module. J Surg Educ 2018;75:758-66.

38. Anceschi U, Galfano A, Luciani L, et al. Analysis of predictors of early trifecta achievement after robot-assisted radical prostatectomy for trainers and expert surgeons: the learning curve never ends. Minerva Urol Nephrol 2022;74:133-6.

39. Checcucci E, Porpiglia F. The future of robotic radical prostatectomy driven by artificial intelligence. Mini-invasive Surg 2021;5:49.

40. Eissa A, Zoeir A, Sighinolfi MC, et al. “Real-time” assessment of surgical margins during radical prostatectomy: state-of-the-art. Clin Genitourin Cancer 2020;18:95-104.

41. Jaulim A, Aydın A, Ebrahim F, Ahmed K, Elhage O, Dasgupta P. Imaging modalities aiding nerve-sparing during radical prostatectomy. Turk J Urol 2019;45:325-30.

42. Gillitzer R, Thüroff C, Fandel T, et al. Intraoperative peripheral frozen sections do not significantly affect prognosis after nerve-sparing radical prostatectomy for prostate cancer. BJU Int 2011;107:755-9.

43. Schlomm T, Tennstedt P, Huxhold C, et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol 2012;62:333-40.

44. Oxley J, Bray A, Rowe E. Could a Mohs technique make NeuroSAFE a viable option? BJU Int 2018;122:358-9.

45. Rocco B, Sighinolfi MC, Bertoni L, et al. Real-time assessment of surgical margins during radical prostatectomy: a novel approach that uses fluorescence confocal microscopy for the evaluation of peri-prostatic soft tissue. BJU Int 2020;125:487-9.

46. Lopez A, Zlatev DV, Mach KE, et al. Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol 2016;195:1110-7.

47. Panarello D, Compérat E, Seyde O, Colau A, Terrone C, Guillonneau B. Atlas of ex vivo prostate tissue and cancer images using confocal laser endomicroscopy: a project for intraoperative positive surgical margin detection during radical prostatectomy. Eur Urol Focus 2020;6:941-58.

48. Puliatti S, Bertoni L, Pirola GM, et al. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological examination of prostatic tissue. BJU Int 2019;124:469-76.

49. Bertoni L, Puliatti S, Reggiani Bonetti L, et al. Ex vivo fluorescence confocal microscopy: prostatic and periprostatic tissues atlas and evaluation of the learning curve. Virchows Arch 2020;476:511-20.

Mini-invasive Surgery
ISSN 2574-1225 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/