REFERENCES
1. Niu G, Pan B, Zhang F, Feng H, Fu Y. Improved surgical instruments without coupled motion used in minimally invasive surgery. Int J Med Robot 2018;14:e1942.
2. Bello B, Herbella FA, Allaix ME, Patti MG. Impact of minimally invasive surgery on the treatment of benign esophageal disorders. World J Gastroenterol 2012;18:6764-70.
3. Gjeraa K, Spanager L, Konge L, Petersen RH, Østergaard D. Non-technical skills in minimally invasive surgery teams: a systematic review. Surg Endosc 2016;30:5185-99.
5. Schatz C. Enhanced recovery in a minimally invasive thoracic surgery program. AORN J 2015;102:482-92.
6. Devgan L, Singh P, Durairaj K. Minimally invasive facial cosmetic procedures. Otolaryngol Clin North Am 2019;52:443-59.
8. Gillion JF, Fagniez PL. Chronic pain and cutaneous sensory changes after inguinal hernia repair: comparison between open and laparoscopic techniques. Hernia 1999;3:75-80.
9. Dedemadi G, Sgourakis G, Karaliotas C, Christofides T, Kouraklis G, Karaliotas C. Comparison of laparoscopic and open tension-free repair of recurrent inguinal hernias: a prospective randomized study. Surg Endosc 2006;20:1099-104.
10. Subramanian VA, Mccabe JC, Geller CM. Minimally invasive direct coronary artery bypass grafting: two-year clinical experience. Ann Thorac Surg 1997;64:1648-55.
11. Stevens JH, Burdon TA, Peters WS, et al. Port-access coronary artery bypass grafting: a proposed surgical method. J Thorac Cardiovasc Surg 1996;111:567-73.
12. Ota T, Degani A, Schwartzman D, et al. A highly articulated robotic surgical system for minimally invasive surgery. Ann Thorac Surg 2009;87:1253-6.
13. Pyciński B, Juszczyk J, Bożek P, Ciekalski J, Dzielicki J, Pietka E. Image navigation in minimally invasive surgery. In: Piętka E, Kawa J, Wieclawek W, editors. Information technologies in biomedicine, volume 4. Cham: Springer International Publishing; 2014. p. 25-34. Available from: https://link.springer.com/chapter/10.1007/978-3-319-06596-0_3.[Last accessed on 24 Aug 2023]
14. Antico M, Sasazawa F, Wu L, et al. Ultrasound guidance in minimally invasive robotic procedures. Med Image Anal 2019;54:149-67.
15. Pisano GP, Bohmer RM, Edmondson AC. Organizational differences in rates of learning: evidence from the adoption of minimally invasive cardiac surgery. Management Science 2001;47:752-68.
16. Moorthy K, Munz Y, Dosis A, et al. Dexterity enhancement with robotic surgery. Surg Endosc 2004;18:790-5.
17. Milano EG, Capelli C, Wray J, et al. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br J Radiol 2019;92:20180389.
18. Min JK, Mosadegh B, Dunham S, Al'Aref SJ. 3D Printing applications in cardiovascular medicine. Cambridge: Academic Press; 2018.
19. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 2017;10:171-84.
20. Biglino G, Capelli C, Binazzi A, et al. Virtual and real bench testing of a new percutaneous valve device: a case study. EuroIntervention 2012;8:120-8.
21. Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg 2015;47:1044-52.
22. Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal S. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals. JACC Cardiovasc Imaging 2015;8:103-4.
23. Chaowu Y, Hua L, Xin S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model. Circulation 2016;133:e608-10.
24. Sodian R, Weber S, Markert M, et al. Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg 2007;83:1854-7.
25. Noecker AM, Chen JF, Zhou Q, et al. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J 2006;52:349-53.
26. Vranicar M, Gregory W, Douglas WI, Di Sessa P, Di Sessa TG. The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Stud Health Technol Inform 2008;132:538-43.
27. Schievano S, Migliavacca F, Coats L, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 2007;242:490-7.
28. Vukicevic M, Conover T, Jaeggli M, et al. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation. ASAIO J 2014;60:391-9.
29. Garekar S, Bharati A, Chokhandre M, et al. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg 2016;7:344-50.
30. Deferm S, Meyns B, Vlasselaers D, Budts W. 3D-printing in congenital cardiology: from flatland to spaceland. J Clin Imaging Sci 2016;6:8.
31. Kiraly L, Tofeig M, Jha NK, Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg 2016;22:238-40.
32. Biglino G, Capelli C, Taylor AM, Schievano S. 3D Printing Cardiovascular Anatomy: A Single-Centre Experience. In: Shishkovsky IV, editor. New Trends in 3D Printing. IntechOpen; 2016.
33. Anwar S, Singh GK, Varughese J, et al. 3D printing in complex congenital heart disease: across a spectrum of age, pathology, and imaging techniques. JACC Cardiovasc Imaging 2017;10:953-6.
34. Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr 2015;28:392-7.
35. Jang S, Torabinia M, Dhrif H, et al. Development of a hybrid training simulator for structural heart disease interventions. Advanced Intelligent Systems 2020;2:2000109.
36. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus, USA. 2014.
37. Jia Y, Shelhamer E, Donahue J, et al. 2014. Caffe: convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (MM '14); New York, USA. 2014.
38. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv. [Preprint.] Febuary 24, 2014 [accessed 2023 August 24]. Available from: https://arxiv.org/abs/1312.6229
39. Chandan G, Jain A, Jain H, Mohana. Real time object detection and tracking using deep learning and OpenCV. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA); 2018 Jul 11-12; Coimbatore, India. 2018.
40. Rajchl M, Lee MC, Oktay O, et al. DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans Med Imaging 2017;36:674-83.
41. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention - MICCAI 2015. Cham: Springer; 2015. p. 234-41. Available from: https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28.[Lastaccessed on 24 Aug 2023]
42. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 2017;39:640-51.
43. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W, editors. Medical image computing and computer-assisted intervention - MICCAI 2016. Cham: Springer; 2016. p. 424-32.
44. Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV); 2016 Oct 25-28; Stanford, USA. 2016.
45. Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 2018;37:2663-74.
46. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-mahmood T, Martel A, Maier-hein L, Tavares JMR, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. p. 3-11.
47. Zhang J, Jin Y, Xu J, Xu X, Zhang Y. Mdu-net: multi-scale densely connected u-net for biomedical image segmentation. Health Inf Sci Syst 2023;11:13.
48. Jin Q, Meng Z, Pham TD, et al. DUNet: a deformable network for retinal vessel segmentation. Knowledge-Based Systems 2019;178:149-62.
49. Jin Q, Meng Z, Sun C, Cui H, Su R. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. Front Bioeng Biotechnol 2020;8:605132.
50. Dolz J, Ben Ayed I, Desrosiers C. Dense multi-path U-Net for ischemic stroke lesion segmentation in multiple image modalities. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, editors. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Cham: Springer; 2018. p. 271-82.
51. Xiao W, Duan X, Lin Y, et al. Distinct proteome remodeling of industrial saccharomyces cerevisiae in response to prolonged thermal stress or transient heat shock. J Proteome Res 2018;17:1812-25.
52. Isensee F, Petersen J, Klein A, et al. Abstract: nnu-net: self-adapting framework for u-net-based medical image segmentation. Available from: https://link.springer.com/chapter/10.1007/978-3-658-25326-4_7.[Last accessed on 24 Aug 2023]
53. Kingma DP, Ba J. . Adam: a method for stochastic optimization. arXiv. [Preprint.] January 30, 2017 [accessed 2023 August 24]. Available from: https://arxiv.org/abs/1412.6980
54. Fukumoto Y, Tsutsui H, Tsuchihashi M, Masumoto A, Takeshita A. The incidence and risk factors of cholesterol embolization syndrome, a complication of cardiac catheterization: a prospective study. J Am Coll Cardiol 2003;42:211-6.
55. Loffroy R, Guiu B, Cercueil JP, Krausé D. Endovascular therapeutic embolisation: an overview of occluding agents and their effects on embolised tissues. Curr Vasc Pharmacol 2009;7:250-63.
56. Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26:297-302.
57. Sra J, Krum D, Choudhuri I, et al. Identifying the third dimension in 2D fluoroscopy to create 3D cardiac maps. JCI Insight 2016;1:e90453.