REFERENCES
2. Rubio-Ruiz ME, El Hafidi M, Pérez-Torres I, Baños G, Guarner V. Medicinal agents and metabolic syndrome. Curr Med Chem 2013;20:2626-40.
4. Navarro VJ, Khan I, Björnsson E, Seeff LB, Serrano J, Hoofnagle JH. Liver injury from herbal and dietary supplements. Hepatology 2017;65:363-73.
5. Zhang HM, Zhao XH, Sun ZH, et al. Recognition of the toxicity of aristolochic acid. J Clin Pharm Ther 2019;44:157-62.
6. Benhammou JN, Lin J, Hussain SK, El-Kabany M. Emerging risk factors for nonalcoholic fatty liver disease associated hepatocellular carcinoma. Hepatoma Res 2020;6:35.
7. Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. Hepatoma Res 2019;5:42.
8. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557-76.
9. Mandlik DS, Mandlik SK. Herbal and natural dietary products: upcoming therapeutic approach for prevention and treatment of hepatocellular carcinoma. Nutr Cancer 2021;73:2130-54.
10. Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary natural products for prevention and treatment of liver cancer. Nutrients 2016;8:156.
11. Khalil M, Khalifeh H, Baldini F, et al. Antitumor activity of ethanolic extract from thymbra spicata l. aerial parts: effects on cell viability and proliferation, apoptosis induction, STAT3, and NF-κB signaling. Nutr Cancer 2021;73:1193-206.
12. Lin SR, Chang CH, Hsu CF, et al. Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br J Pharmacol 2020;177:1409-23.
13. Korak T, Ergül E, Sazci A. Nigella sativa and cancer: a review focusing on breast cancer, inhibition of metastasis and enhancement of natural killer cell cytotoxicity. Curr Pharm Biotechnol 2020;21:1176-85.
14. Ahmad A, Ansari IA. Carvacrol exhibits chemopreventive potential against cervical cancer cells via caspase-dependent apoptosis and abrogation of cell cycle progression. Anticancer Agents Med Chem 2021;21:2224-35.
15. World Health Organization. WHO guidelines on developing consumer information on proper use of traditional, complementary and alternative medicine. Available from: Https://Www.Who.Int/Publications/I/Item/9241591706 [Last accessed on 15 Apr 2022].
16. Wu K, Jiang L, Cao J, Yang G, Geng C, Zhong L. Genotoxic effect and nitrative DNA damage in HepG2 cells exposed to aristolochic acid. Mutat Res 2007;630:97-102.
17. Li Y, Zhu S, Xue M, et al. Aristolochic acid I promotes the invasion and migration of hepatocellular carcinoma cells by activating the C3a/C3aR complement system. Toxicol Lett ;2020:S0378-4274(20)30410.
18. Lu ZN, Luo Q, Zhao LN, et al. The mutational features of aristolochic acid-induced mouse and human liver cancers. Hepatology 2020;71:929-42.
19. Jin K, Su KK, Li T, et al. Hepatic premalignant alterations triggered by human nephrotoxin aristolochic acid I in canines. Cancer Prev Res (Phila) 2016;9:324-34.
20. Chen CJ, Yang YH, Lin MH, et al. Health Data Analysis in Taiwan (hDATa) Research Group. Herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. Int J Cancer 2018;143:1578-87.
21. Hu ZQ, Xin HY, Luo CB, et al. Associations among the mutational landscape, immune microenvironment, and prognosis in Chinese patients with hepatocellular carcinoma. Cancer Immunol Immunother 2021;70:377-89.
23. Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A 2009;1216:2002-32.
24. Mei N, Guo X, Ren Z, Kobayashi D, Wada K, Guo L. Review of ginkgo biloba-induced toxicity, from experimental studies to human case reports. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2017;35:1-28.
25. Mahadevan S, Park Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J Food Sci 2008;73:R14-9.
26. Berg K, Braun C, Krug I, Schrenk D. Evaluation of the cytotoxic and mutagenic potential of three ginkgolic acids. Toxicology 2015;327:47-52.
27. National Toxicology Program. Toxicology and carcinogenesis studies of ginkgo biloba extract (Cas No. 90045-36-6) in F344/N rats and B6c3f1/N mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser ;2013:1-183.
28. Hoenerhoff MJ, Pandiri AR, Snyder SA, et al. Hepatocellular carcinomas in B6C3F1 mice treated with Ginkgo biloba extract for two years differ from spontaneous liver tumors in cancer gene mutations and genomic pathways. Toxicol Pathol 2013;41:826-41.
29. Maeda J, Inoue K, Ichimura R, et al. Essential role of constitutive androstane receptor in Ginkgo biloba extract induced liver hypertrophy and hepatocarcinogenesis. Food Chem Toxicol 2015;83:201-9.
30. National Toxicology Program. Toxicology and carcinogenesis studies of isoeugenol (Cas No. 97-54-1) in F344/N rats and B6c3f1 mice (Gavage studies). Natl Toxicol Program Tech Rep Ser ;2010:1-178.
31. National Toxicology Program. Ntp toxicology and carcinogenesis studies of methyleugenol (Cas No. 93-15-2) in F344/N rats and B6c3f1 mice (Gavage studies). Natl Toxicol Program Tech Rep Ser 2000;491:1-412.
32. Devereux TR, Anna CH, Foley JF, White CM, Sills RC, Barrett JC. Mutation of beta-catenin is an early event in chemically induced mouse hepatocellular carcinogenesis. Oncogene 1999;18:4726-33.
33. Miele M, Dondero R, Ciarallo G, Mazzei M. Methyleugenol in ocimum basilicum L. Cv. genovese gigante. J Agric Food Chem 2001;49:517-21.
34. Al-Malahmeh AJ, Al-Ajlouni AM, Wesseling S, Vervoort J, Rietjens IMCM. Determination and risk assessment of naturally occurring genotoxic and carcinogenic alkenylbenzenes in basil-containing sauce of pesto. Toxicol Rep 2017;4:1-8.
36. Mm, Hinton De, Klaunig Je, Trump Bf. Biology of hepatocellular neoplasia in the mouse. I. histogenesis of safrole-induced hepatocellular carcinoma. J Natl Cancer Inst 1981;67:365-76.
37. Lipsky MM, Hinton DE, Klaunig JE, Goldblatt PJ, Trump BF. Gamma glutamyl transpeptidase in safrole-induced, presumptive premalignant mouse hepatocytes. Carcinogenesis 1980;1:151-6.
38. Kobets T, Duan JD, Brunnemann KD, Etter S, Smith B, Williams GM. Structure-activity relationships for DNA damage by alkenylbenzenes in turkey egg fetal liver. Toxicol Sci 2016;150:301-11.
39. Rw, Fennell Tr, Miller Ja, Miller Ec. Further characterization of the DNA adducts formed by electrophilic esters of the hepatocarcinogens 1’-hydroxysafrole and 1’-hydroxyestragole. in vitro ;45:3096-105.
40. Randerath K, Haglund RE, Phillips DH, Reddy MV. 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Carcinogenesis 1984;5:1613-22.
41. Rw, Miller Ec, Miller Ja, Liem A. Structure-activity studies of the hepatocarcinogenicities of alkenylbenzene derivatives related to estragole and safrole on administration to preweanling male C57bl/6j X C3h/Hej F1 mice. Cancer Res 1987;47:2275-83.
42. Shafique K, Zafar M, Ahmed Z, Khan NA, Mughal MA, Imtiaz F. Areca nut chewing and metabolic syndrome: evidence of a harmful relationship. Nutr J 2013;12:67.
43. Yamada T, Hara K, Kadowaki T. Chewing betel quid and the risk of metabolic disease, cardiovascular disease, and all-cause mortality: a meta-analysis. PLoS One 2013;8:e70679.
44. Chou YT, Li CH, Sun ZJ, et al. A Positive relationship between betel nut chewing and significant liver fibrosis in NAFLD subjects, but not in non-NAFLD ones. Nutrients 2021;13:914.
45. Wu GH, Boucher BJ, Chiu YH, Liao CS, Chen TH. Impact of chewing betel-nut (Areca catechu) on liver cirrhosis and hepatocellular carcinoma: a population-based study from an area with a high prevalence of hepatitis B and C infections. Public Health Nutr 2009;12:129-35.
46. Wang L. You Sl, Lu Sn, et al. Risk of hepatocellular carcinoma and habits of alcohol drinking, betel quid chewing and cigarette smoking: a cohort of 2416 HBsAg-seropositive and 9421 HBsAg-seronegative male residents in Taiwan. Cancer Causes Control 2003;14:241-50.
47. Tsai JF, Chuang LY, Jeng JE, et al. Betel quid chewing as a risk factor for hepatocellular carcinoma: a case-control study. Br J Cancer 2001;84:709-13.
48. Tsai JF, Jeng JE, Chuang LY, et al. Habitual betel quid chewing and risk for hepatocellular carcinoma complicating cirrhosis. Medicine (Baltimore) 2004;83:176-87.
49. Jeng JE, Tsai MF, Tsai HR, et al. Impact of chronic hepatitis B and hepatitis C on adverse hepatic fibrosis in hepatocellular carcinoma related to betel quid chewing. Asian Pac J Cancer Prev 2014;15:637-42.
50. Choudhury MD, Chetia P, Choudhury KD, Talukdar AD, Datta-Choudhari M. Atherogenic effect of arecoline: a computational study. Bioinformation 2012;8:229-32.
51. Dasgupta R, Saha I, Pal S, et al. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice. Toxicology 2006;227:94-104.
52. Marques MM, Beland FA, Lachenmeier DW, et al. Carcinogenicity of acrolein, crotonaldehyde, and arecoline. The Lancet Oncology 2021;22:19-20.
53. Chou WW, Guh JY, Tsai JF, et al. Arecoline-induced growth arrest and p21WAF1 expression are dependent on p53 in rat hepatocytes. Toxicology 2008;243:1-10.
54. Wang TS, Lin CP, Chen YP, Chao MR, Li CC, Liu KL. CYP450-mediated mitochondrial ROS production involved in arecoline N-oxide-induced oxidative damage in liver cell lines. Environ Toxicol 2018;33:1029-38.
55. Mesallamy HO, Metwally NS, Soliman MS, Ahmed KA, Abdel Moaty MM. The chemopreventive effect of Ginkgo biloba and Silybum marianum extracts on hepatocarcinogenesis in rats. Cancer Cell Int 2011;11:38.
56. Varghese L, Agarwal C, Tyagi A, Singh RP, Agarwal R. Silibinin efficacy against human hepatocellular carcinoma. Clin Cancer Res 2005;11:8441-8.
57. Brandon-Warner E, Sugg JA, Schrum LW, McKillop IH. Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Lett 2010;291:120-9.
58. Mao J, Yang H, Cui T, et al. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol 2018;832:39-49.
59. Yurtcu E, Darcansoy Iseri O, Iffet Sahin F. Effects of silymarin and silymarin-doxorubicin applications on telomerase activity of human hepatocellular carcinoma cell line Hepg2. J Buon 2015;20:555-61.
60. Miethe C, Nix H, Martin R, Hernandez AR, Price RS. Silibinin reduces the impact of obesity on invasive liver cancer. Nutr Cancer 2017;69:1272-80.
61. Zhang S, Yang Y, Liang Z, et al. Silybin-mediated inhibition of notch signaling exerts antitumor activity in human hepatocellular carcinoma cells. PLoS One 2013;8:e83699.
62. Chen Q, Guo H, Zong Y, Zhao X. Curcumin restrains hepatocellular carcinoma progression depending on the regulation of the circ_0078710/miR-378b/PRIM2 axis. J Recept Signal Transduct Res 2021:1-12.
63. Duan W, Chang Y, Li R, et al. Curcumin inhibits hypoxia inducible factor 1α induced epithelial mesenchymal transition in HepG2 hepatocellular carcinoma cells. Mol Med Rep 2014;10:2505-10.
64. Cao MT, Liu HF, Liu ZG, et al. Curcumin downregulates the expression of snail via suppressing Smad2 pathway to inhibit TGF-β1-induced epithelial-mesenchymal transitions in hepatoma cells. Oncotarget 2017;8:108498-508.
65. Wang WH, Chiang IT, Ding K, et al. Curcumin-induced apoptosis in human hepatocellular carcinoma j5 cells: critical role of Ca(+2)-dependent pathway. Evid Based Complement Alternat Med 2012;2012:512907.
66. Zhou C, Hu C, Wang B, Fan S, Jin W. Curcumin suppresses cell proliferation, migration, and invasion through modulating miR-21-5p/. SOX6 :axis in hepatocellular carcinoma.
67. Kim HJ, Park SY, Park OJ, Kim YM. Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol Med Rep 2013;8:282-6.
68. Xu MX, Zhao L, Deng C, et al. Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. Int J Oncol 2013;43:1951-9.
69. Shao J, Shi CJ, Li Y, et al. LincROR Mediates the suppressive effects of curcumin on hepatocellular carcinoma through inactivating Wnt/β-catenin signaling. Front Pharmacol 2020;11:847.
70. Hu P, Ke C, Guo X, et al. Both glypican-3/Wnt/β-catenin signaling pathway and autophagy contributed to the inhibitory effect of curcumin on hepatocellular carcinoma. Dig Liver Dis 2019;51:120-6.
71. Chiablaem K, Lirdprapamongkol K, Keeratichamroen S, Surarit R, Svasti J. Curcumin suppresses vasculogenic mimicry capacity of hepatocellular carcinoma cells through Stat3 And Pi3k/Akt inhibition. Anticancer Res 2014;34:1857-64.
72. Zhang K, Rui X, Yan X. Curcumin inhibits the proliferation and invasiveness of MHCC97-H cells via p38 signaling pathway. Drug Dev Res 2014;75:463-8.
73. Yj, Xiang H, Liu Js, Li D, Fang Zy, Zhang H. Study on the mechanism of Ampk signaling pathway and its effect on apoptosis of human hepatocellular carcinoma Smmc-7721 cells by curcumin. Eur Rev Med Pharmacol Sci 2017;21:1144-50.
74. Han L, Wang Y, Sun S. Curcumin inhibits proliferation of hepatocellular carcinoma cells through down regulation of DJ-1. Cancer Biomark 2020;29:1-8.
75. Liang WF, Gong YX, Li HF, et al. Curcumin activates ROS signaling to promote pyroptosis in hepatocellular carcinoma HepG2 cells. In Vivo 2021;35:249-57.
76. Cheng CY, Lin YH, Su CC. Curcumin inhibits the proliferation of human hepatocellular carcinoma J5 cells by inducing endoplasmic reticulum stress and mitochondrial dysfunction. Int J Mol Med 2010;26:673-8.
77. You Z, Li B, Xu J, Chen L, Ye H. Curcumin suppress the growth of hepatocellular carcinoma via down-regulating. SREBF1 :.
78. Wang WZ, Li L, Liu MY, et al. Curcumin induces FasL-related apoptosis through p38 activation in human hepatocellular carcinoma Huh7 cells. Life Sci 2013;92:352-8.
79. Kim J, Ha HL, Moon HB, et al. Chemopreventive effect of Curcuma longa Linn on liver pathology in HBx transgenic mice. Integr Cancer Ther 2011;10:168-77.
80. El-Shahat M, El-Abd S, Alkafafy M, El-Khatib G. Potential chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis in rats: myrrh (Commiphora molmol) vs. turmeric (Curcuma longa). Acta Histochem 2012;114:421-8.
81. Cheng SB, Wu LC, Hsieh YC, et al. Supercritical carbon dioxide extraction of aromatic turmerone from curcuma longa linn. induces apoptosis through reactive oxygen species-triggered intrinsic and extrinsic pathways in human hepatocellular carcinoma HepG2 cells. J Agric Food Chem 2012;60:9620-30.
82. Abdel-Lateef E, Mahmoud F, Hammam O, et al. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharm 2016;66:387-98.
83. Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol 2015;63:661-9.
84. Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S. Antiangiogenic activity of curcumin in hepatocellular carcinoma cells implanted nude mice. Clin Hemorheol Microcirc 2005;33:127-35.
85. Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S. Effects of curcumin on tumor angiogenesis and biomarkers, Cox-2 and Vegf, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc 2006;34:109-15.
86. Pan Z, Zhuang J, Ji C, Cai Z, Liao W, Huang Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol Lett 2018;15:4821-6.
87. Mohammed ES, El-Beih NM, El-Hussieny EA, El-Ahwany E, Hassan M, Zoheiry M. Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model. Arch Med Sci 2021;17:218-27.
88. Elmansi AM, El-Karef AA, Shishtawy MMEl, Eissa LA. Hepatoprotective effect of curcumin on hepatocellular carcinoma through autophagic and apoptic pathways. Ann Hepatol 2017;16:607-18.
89. Li J, Wei H, Liu Y, et al. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evid Based Complement Alternat Med 2020;2020:2892917.
90. Tork OM, Khaleel EF, Abdelmaqsoud OM. Altered cell to cell communication, autophagy and mitochondrial dysfunction in a model of hepatocellular carcinoma: potential protective effects of curcumin and stem cell therapy. Asian Pac J Cancer Prev 2015;16:8271-9.
91. Bortel N, Armeanu-Ebinger S, Schmid E, et al. Effects of curcumin in pediatric epithelial liver tumors: inhibition of tumor growth and alpha-fetoprotein in vitro and in vivo involving the NFkappaB- and the beta-catenin pathways. Oncotarget 2015;6:40680-91.
92. Liu J, Shen H, Ong C. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells. Cancer Letters 2000;153:85-93.
93. Liu J, Shen HM, Ong CN. Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia Miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sciences 2001;69:1833-50.
94. Jiang Y, Zhang L, Rupasinghe HP. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed Pharmacother 2017;85:57-67.
95. Hu S, Chen SM, Li XK, Qin R, Mei ZN. Antitumor effects of chi-shen extract from Salvia miltiorrhiza and Paeoniae radix on human hepatocellular carcinoma cells. Acta Pharmacol Sin 2007;28:1215-23.
96. Huang XY, Wang L, Huang ZL, Zheng Q, Li QS, Tang ZY. Herbal extract “Songyou Yin” inhibits tumor growth and prolongs survival in nude mice bearing human hepatocellular carcinoma xenograft with high metastatic potential. J Cancer Res Clin Oncol 2009;135:1245-55.
97. Liu X, Yang Y, Zhang X, et al. Compound Astragalus and Salvia miltiorrhiza extract inhibits cell invasion by modulating transforming growth factor-beta/Smad in HepG2 cell. J Gastroenterol Hepatol 2010;25:420-6.
98. Rui W, Xie L, Liu X, et al. Compound Astragalus and Salvia miltiorrhiza extract suppresses hepatocellular carcinoma progression by inhibiting fibrosis and PAI-1 mRNA transcription. J Ethnopharmacol 2014;151:198-209.
99. Hu X, Rui W, Wu C, et al. Compound Astragalus and Salvia miltiorrhiza extracts suppress hepatocarcinogenesis by modulating transforming growth factor-β/Smad signaling. J Gastroenterol Hepatol 2014;29:1284-91.
100. Boye A, Wu C, Jiang Y, et al. Compound Astragalus and Salvia miltiorrhiza extracts modulate MAPK-regulated TGF-β/Smad signaling in hepatocellular carcinoma by multi-target mechanism. J Ethnopharmacol 2015;169:219-28.
101. Wu C, Kan H, Hu M, et al. Compound Astragalus and Salvia miltiorrhiza extract inhibits hepatocarcinogenesis via modulating TGF-β/TβR and Imp7/8. Exp Ther Med 2018;16:1052-60.
102. Wu C, Chen W, Fang M, et al. Compound Astragalus and Salvia miltiorrhiza extract inhibits hepatocellular carcinoma progression via miR-145/miR-21 mediated Smad3 phosphorylation. J Ethnopharmacol 2019;231:98-112.
103. Liu L, Jia J, Zeng G, et al. Studies on immunoregulatory and anti-tumor activities of a polysaccharide from Salvia miltiorrhiza Bunge. Carbohydr Polym 2013;92:479-83.
104. Lee WY, Cheung CC, Liu KW, et al. Cytotoxic effects of tanshinones from Salvia miltiorrhiza on doxorubicin-resistant human liver cancer cells. J Nat Prod 2010;73:854-9.
105. Lee WY, Liu KW, Yeung JH. Reactive oxygen species-mediated kinase activation by dihydrotanshinone in tanshinones-induced apoptosis in HepG2 cells. Cancer Lett 2009;285:46-57.
106. Zheng L, Zhang Y, Liu G, et al. Tanshinone I regulates autophagic signaling via the activation of AMP-activated protein kinase in cancer cells. Anticancer Drugs 2020;31:601-8.
107. Chang JH, Lin CH, Shibu MA, et al. Cryptotanshinone (Dsh-003) from Salvia miltiorrhiza Bunge inhibits prostaglandin E2-induced survival and invasion effects in HA22T hepatocellular carcinoma cells. Environ Toxicol 2018;33:1254-60.
108. Zhu P, Liu Z, Zhou J, Chen Y. Tanshinol inhibits the growth, migration and invasion of hepatocellular carcinoma cells via regulating the PI3K-AKT signaling pathway. Onco Targets Ther 2019;12:87-99.
109. Lin CY, Chang TW, Hsieh WH, et al. Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov 2016;2:16065.
110. Yuxian X, Feng T, Ren L, Zhengcai L. Tanshinone Ii-A Inhibits invasion and metastasis of human hepatocellular carcinoma cells in vitro and in vivo. Tumori 2009;95:789-95.
111. Dai ZK, Qin JK, Huang JE, Luo Y, Xu Q, Zhao HL. Tanshinone IIA activates calcium-dependent apoptosis signaling pathway in human hepatoma cells. J Nat Med 2012;66:192-201.
112. Hong JY, Park SH, Park HJ, Lee SK. Anti-proliferative effect of 15,16-dihydrotanshinone i through cell cycle arrest and the regulation of AMP-activated protein kinase/Akt/mTOR and mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells. J Cancer Prev 2018;23:63-9.
113. Han Z, Liu S, Lin H, et al. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunol Immunother 2019;68:1073-85.
114. Zhang X, Zhang P, An L, et al. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis. Acta Pharm Sin B 2020;10:1397-413.
115. Lu HL, Su YC, Lin MC, Sun MF, Huang ST. Integrating Chinese and Western medicines reduced the incidence of hepatocellular carcinoma in patients with diabetes mellitus: a Taiwanese population-based cohort study. Complement Ther Med 2020;49:102332.
116. Padma V, Arul Diana Christie S, Ramkuma KM. Induction of apoptosis by ginger in HEp-2 cell line is mediated by reactive oxygen species. Basic Clin Pharmacol Toxicol 2007;100:302-7.
117. Elkady AI, Abu-Zinadah OA, Hussein RAEH. Crude flavonoid extract of medicinal herb. Zingibar officinale ;25:897-912.
118. Wang Y, Wang S, Song R, et al. Ginger polysaccharides induced cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 2019;123:81-90.
119. Weng CJ, Wu CF, Huang HW, Ho CT, Yen GC. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res 2010;54:1618-27.
120. Weng CJ, Chou CP, Ho CT, Yen GC. Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol. Mol Nutr Food Res 2012;56:1304-14.
121. Nazim UM, Park SY. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int J Mol Med 2019;43:701-8.
122. Wu JJ, Omar HA, Lee YR, et al. 6-Shogaol induces cell cycle arrest and apoptosis in human hepatoma cells through pleiotropic mechanisms. Eur J Pharmacol 2015;762:449-58.
123. Hu R, Zhou P, Peng YB, et al. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity. in vivo ;7:e39664.
124. Chen CY, Tai CJ, Cheng JT, et al. 6-dehydrogingerdione sensitizes human hepatoblastoma Hep G2 cells to TRAIL-induced apoptosis via reactive oxygen species-mediated increase of DR5. J Agric Food Chem 2010;58:5604-11.
125. Yang G, Zhong L, Jiang L, et al. Genotoxic effect of 6-gingerol on human hepatoma G2 cells. Chem Biol Interact 2010;185:12-7.
126. Yang G, Wang S, Zhong L, et al. 6-Gingerol induces apoptosis through lysosomal-mitochondrial axis in human hepatoma G2 cells. Phytother Res 2012;26:1667-73.
127. Hamza AA, Heeba GH, Hamza S, Abdalla A, Amin A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/ inflammation pathway. Biomed Pharmacother 2021;134:111102.
128. Habib SH, Makpol S, Abdul Hamid NA, Das S, Ngah WZ, Yusof YA. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics (Sao Paulo) 2008;63:807-13.
129. Mansour MA, Bekheet SA, Al-Rejaie SS, et al. Ginger ingredients inhibit the development of diethylnitrosoamine induced premalignant phenotype in rat chemical hepatocarcinogenesis model. Biofactors 2010;36:483-90.
130. Yusof YA, Ahmad N, Das S, Sulaiman S, Murad NA. Chemopreventive efficacy of ginger (Zingiber officinale) in ethionine induced rat hepatocarcinogenesis. Afr J Tradit Complement Altern Med 2008;6:87-93.