REFERENCES
1. Marescaux J, Clément JM, Tassetti V, et al. Virtual reality applied to hepatic surgery simulation: the next revolution. Ann Surg 1998;228:627-34.
3. Kokudo N, Takemura N, Ito K, Mihara F. The history of liver surgery: Achievements over the past 50 years. Ann Gastroenterol Surg 2020;4:109-17.
4. Langridge B, Momin S, Coumbe B, Woin E, Griffin M, Butler P. Systematic review of the use of 3-dimensional printing in surgical teaching and assessment. J Surg Educ 2018;75:209-21.
5. Witowski JS, Pędziwiatr M, Major P, Budzyński A. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int J Comput Assist Radiol Surg 2017;12:2047-54.
6. . National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington (DC): National Academies Press (US); 2011.
8. Dong J, Huang Z. [Precise liver resection-new concept of liver surgery in 21st century]. Zhonghua Wai Ke Za Zhi 2009;47:1601-5.
9. JiaHong D, ZhiQiang H. To advocate precise hepatectomy and recreate the legend of Prometheus. Chinese J Dig Surg 2010;9:4-5.
11. Shakir HJ, Shallwani H, Levy EI. Editorial: see one, do one, teach one? Neurosurgery 2017;80:3-5.
12. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
13. Han J, Kang HJ, Kim M, Kwon GH. Mapping the intellectual structure of research on surgery with mixed reality: bibliometric network analysis (2000-2019). J Biomed Inform 2020;109:103516.
14. Quero G, Lapergola A, Soler L, et al. Virtual and augmented reality in oncologic liver surgery. Surg Oncol Clin N Am 2019;28:31-44.
15. Agostini A, Borgheresi A, Floridi C, et al. The role of imaging in surgical planning for liver resection: what the radiologist need to know. Acta Biomed 2020;91:18-26.
16. Darge K, Papadopoulou F, Ntoulia A, et al. Safety of contrast-enhanced ultrasound in children for non-cardiac applications: a review by the Society for Pediatric Radiology (SPR) and the International Contrast Ultrasound Society (ICUS). Pediatr Radiol 2013;43:1063-73.
18. Dietrich CF, Averkiou M, Nielsen MB, et al. How to perform Contrast-Enhanced Ultrasound (CEUS). Ultrasound Int Open 2018;4:E2-E15.
19. Claudon M, Dietrich CF, Choi BI, et al. World Federation for Ultrasound in Medicine, European Federation of Societies for Ultrasound. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver - update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol 2013;39:187-210.
20. Dietrich CF, Kratzer W, Strobe D, et al. Assessment of metastatic liver disease in patients with primary extrahepatic tumors by contrast-enhanced sonography versus CT and MRI. World J Gastroenterol 2006;12:1699-705.
21. Chiorean L, Caraiani C, Radziņa M, Jedrzejczyk M, Schreiber-Dietrich D, Dietrich CF. Vascular phases in imaging and their role in focal liver lesions assessment. Clin Hemorheol Microcirc 2015;62:299-326.
22. Seitz K, Strobel D, Bernatik T, et al. Contrast-Enhanced Ultrasound (CEUS) for the characterization of focal liver lesions - prospective comparison in clinical practice: CEUS vs. CT (DEGUM multicenter trial). Parts of this manuscript were presented at the Ultrasound Dreiländertreffen 2008, Davos. Ultraschall Med 2009;30:383-9.
23. Sidhu PS, Cantisani V, Deganello A, et al. Role of Contrast-Enhanced Ultrasound (CEUS) in paediatric practice: an EFSUMB position statement. Ultraschall Med 2017;38:33-43.
24. Thimm MA, Rhee D, Takemoto CM, et al. Diagnosis of congenital and acquired focal lesions in the neck, abdomen, and pelvis with contrast-enhanced ultrasound: a pictorial essay. Eur J Pediatr 2018;177:1459-70.
25. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin North Am 2009;47:27-40.
26. You Y, Zhang M, Li K, et al. Feasibility of 3D US/CEUS-US/CEUS fusion imaging-based ablation planning in liver tumors: a retrospective study. Abdom Radiol (NY) 2021; doi: 10.1007/s00261-020-02909-5.
27. Chung EM, Lattin GE Jr, Cube R, et al. From the archives of the AFIP: Pediatric liver masses: radiologic-pathologic correlation. Part 2. Malignant tumors. Radiographics 2011;31:483-507.
28. McHugh K, Disini L. Commentary: for the children's sake, avoid non-contrast CT. Cancer Imaging 2011;11:16-8.
30. Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 2001;13:397-401.
31. Oi H, Murakami T, Kim T, Matsushita M, Kishimoto H, Nakamura H. Dynamic MR imaging and early-phase helical CT for detecting small intrahepatic metastases of hepatocellular carcinoma. AJR Am J Roentgenol 1996;166:369-74.
32. Yamashita Y, Mitsuzaki K, Yi T, et al. Small hepatocellular carcinoma in patients with chronic liver damage: prospective comparison of detection with dynamic MR imaging and helical CT of the whole liver. Radiology 1996;200:79-84.
33. Siegel MJ, Chung EM, Conran RM. Pediatric liver: focal masses. Magn Reson Imaging Clin N Am 2008;16:437-52, v.
34. Chavhan GB, Shelmerdine S, Jhaveri K, Babyn PS. Liver MR imaging in children: current concepts and technique. Radiographics 2016;36:1517-32.
35. Jaspan ON, Fleysher R, Lipton ML. Compressed sensing MRI: a review of the clinical literature. Br J Radiol 2015;88:20150487.
36. Ditchfield M. 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 2008;68:309-19.
37. Schindera ST, Merkle EM, Dale BM, Delong DM, Nelson RC. Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio? Acad Radiol 2006;13:1236-43.
38. Seale MK, Catalano OA, Saini S, Hahn PF, Sahani DV. Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics 2009;29:1725-48.
39. Cruite I, Schroeder M, Merkle EM, Sirlin CB. Gadoxetate disodium-enhanced MRI of the liver: part 2, protocol optimization and lesion appearance in the cirrhotic liver. AJR Am J Roentgenol 2010;195:29-41.
40. Hamm B, Staks T, Mühler A, et al. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 1995;195:785-92.
41. Schooler GR, Hull NC, Lee EY. Hepatobiliary MRI contrast agents: pattern recognition approach to pediatric focal hepatic lesions. AJR Am J Roentgenol 2020;214:976-86.
42. Chavhan GB, Mann E, Kamath BM, Babyn PS. Gadobenate-dimeglumine-enhanced magnetic resonance imaging for hepatic lesions in children. Pediatr Radiol 2014;44:1266-74.
43. Marrone G, Maggiore G, Carollo V, Sonzogni A, Luca A. Biliary cystadenoma with bile duct communication depicted on liver-specific contrast agent-enhanced MRI in a child. Pediatr Radiol 2011;41:121-4.
44. Meyers AB, Towbin AJ, Serai S, Geller JI, Podberesky DJ. Characterization of pediatric liver lesions with gadoxetate disodium. Pediatr Radiol 2011;41:1183-97.
45. Joyner BL Jr, Levin TL, Goyal RK, Newman B. Focal nodular hyperplasia of the liver: a sequela of tumor therapy. Pediatr Radiol 2005;35:1234-9.
46. Plumley DA, Grosfeld JL, Kopecky KK, Buckwalter KA, Vaughan W. The role of spiral (Helical) computerized tomography with three-dimensional reconstruction in pediatric solid tumors. J Pediatr Surg 1995;30:317-21.
47. Fuchs J, Warmann SW, Szavay P, et al. Three-dimensional visualization and virtual simulation of resections in pediatric solid tumors. J Pediatr Surg 2005;40:364-70.
48. Dong Q, Xu W, Jiang B, et al. Clinical applications of computerized tomography 3-D reconstruction imaging for diagnosis and surgery in children with large liver tumors or tumors at the hepatic hilum. Pediatr Surg Int 2007;23:1045-50.
49. Fuchs J, Warmann SW, Sieverding L, et al. Impact of virtual imaging procedures on treatment strategies in children with hepatic vascular malformations. J Pediatr Gastroenterol Nutr 2010;50:67-73.
50. Souzaki R, Ieiri S, Uemura M, et al. An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. J Pediatr Surg 2013;48:2479-83.
51. Souzaki R, Kinoshita Y, Ieiri S, et al. Three-dimensional liver model based on preoperative CT images as a tool to assist in surgical planning for hepatoblastoma in a child. Pediatr Surg Int 2015;31:593-6.
52. Su L, Zhou XJ, Dong Q, et al. Application value of computer assisted surgery system in precision surgeries for pediatric complex liver tumors. Int J Clin Exp Med 2015;8:18406-12.
53. Soejima Y, Taguchi T, Sugimoto M, et al. Three-dimensional printing and biotexture modeling for preoperative simulation in living donor liver transplantation for small infants. Liver Transpl 2016;22:1610-4.
54. Su L, Dong Q, Zhang H, et al. Clinical application of a three-dimensional imaging technique in infants and young children with complex liver tumors. Pediatr Surg Int 2016;32:387-95.
55. Warmann SW, Schenk A, Schaefer JF, et al. Computer-assisted surgery planning in children with complex liver tumors identifies variability of the classical Couinaud classification. J Pediatr Surg 2016;51:1801-6.
56. Newe A, Becker L, Schenk A. Application and evaluation of interactive 3D PDF for presenting and sharing planning results for liver surgery in clinical routine. PLoS One 2014;9:e115697.
57. Zhang G, Zhou XJ, Zhu CZ, Dong Q, Su L. Usefulness of three-dimensional(3D) simulation software in hepatectomy for pediatric hepatoblastoma. Surg Oncol 2016;25:236-43.
58. Janek J, Bician P, Kenderessy P, et al. [Experience with hepatoblastoma treatment in small children - the use of preoperative 3D virtual analysis MeVis for liver resections]. Rozhl Chir 2017;96:25-33.
59. Zhao J, Zhou XJ, Zhu CZ, et al. 3D simulation assisted resection of giant hepatic mesenchymal hamartoma in children. Comput Assist Surg (Abingdon) 2017;22:54-9.
60. Wang P, Que W, Zhang M, et al. Application of 3-dimensional printing in pediatric living donor liver transplantation: a single-center experience. Liver Transpl 2019;25:831-40.
61. Esaki T, Furukawa R. [Volume measurements of post-transplanted liver of pediatric recipients using workstations and deep learning]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2020;76:1133-42.
62. Ronneberger O, Fischer P, Brox T. . U-Net: convolutional networks for biomedical image segmentation. Cham: Springer; 2015.
63. Ishii T, Fukumitsu K, Ogawa E, Okamoto T, Uemoto S. Living donor liver transplantation in situs inversus totalis with a patient-specific three-dimensional printed liver model. Pediatr Transplant 2020;24:e13675.
64. Czauderna P, Lopez-Terrada D, Hiyama E, Häberle B, Malogolowkin MH, Meyers RL. Hepatoblastoma state of the art: pathology, genetics, risk stratification, and chemotherapy. Curr Opin Pediatr 2014;26:19-28.
65. Meyers RL, Czauderna P, Otte JB. Surgical treatment of hepatoblastoma. Pediatr Blood Cancer 2012;59:800-8.
66. Murawski M, Łosin M, Gołębiewski A, et al. Laparoscopic resection of liver tumors in children. J Pediatr Surg 2021;56:420-3.
67. Cai X. Laparoscopic liver resection: the current status and the future. Hepatobiliary Surg Nutr 2018;7:98-104.
68. Marescaux J, Rubino F, Arenas M, Mutter D, Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA 2004;292:2214-5.
69. Haouchine N, Dequidt J, Berger M-O, Cotin S. Deformation-based augmented reality for hepatic surgery. Stud Health Technol Inform 2013;184:182-8.
70. Abdalla EK, Barnett CC, Doherty D, Curley SA, Vauthey JN. Extended hepatectomy in patients with hepatobiliary malignancies with and without preoperative portal vein embolization. Arch Surg 2002;137:675-80; discussion 680.
71. Vauthey JN, Chaoui A, Do KA, et al. Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery 2000;127:512-9.
72. Shoup M. Volumetric analysis predicts hepatic dysfunction in patients undergoing major liver resection. J Gastrointest Surg 2003;7:325-30.
73. Ripley B, Levin D, Kelil T, et al. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses. J Magn Reson Imaging 2017;45:635-45.
74. van der Vorst JR, van Dam RM, van Stiphout RS, et al. Virtual liver resection and volumetric analysis of the future liver remnant using open source image processing software. World J Surg 2010;34:2426-33.
75. Dello SA, Stoot JH, van Stiphout RS, et al. Prospective volumetric assessment of the liver on a personal computer by nonradiologists prior to partial hepatectomy. World J Surg 2011;35:386-92.
76. Dello SA, van Dam RM, Slangen JJ, et al. Liver volumetry plug and play: do it yourself with ImageJ. World J Surg 2007;31:2215-21.
77. Lodewick TM, Arnoldussen CW, Lahaye MJ, et al. Fast and accurate liver volumetry prior to hepatectomy. HPB (Oxford) 2016;18:764-72.
78. Ibtehaz N, Rahman MS. MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 2020;121:74-87.
79. Heimann T, van Ginneken B, Styner MA, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 2009;28:1251-65.
80. Tian Y, Xue F, Lambo R, et al. Fully-automated functional region annotation of liver via a 2.5D class-aware deep neural network with spatial adaptation. Comput Methods Programs Biomed 2021;200:105818.
81. Winkel DJ, Weikert TJ, Breit HC, et al. Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation. Eur J Radiol 2020;126:108918.
82. Witowski JS, Coles-Black J, Zuzak TZ, et al. 3D Printing in liver surgery: a systematic review. Telemed J E Health 2017;23:943-7.
83. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 2016;15:115.
84. Chen H, He Y, Jia W. Precise hepatectomy in the intelligent digital era. Int J Biol Sci 2020;16:365-73.
85. Gotra A, Sivakumaran L, Chartrand G, et al. Liver segmentation: indications, techniques and future directions. Insights Imaging 2017;8:377-92.
86. Saito Y, Sugimoto M, Imura S, et al. Intraoperative 3D hologram support with mixed reality techniques in liver surgery. Ann Surg 2020;271:e4-7.
87. Elshafei M, Binder J, Baecker J, et al. Comparison of cinematic rendering and computed tomography for speed and comprehension of surgical anatomy. JAMA Surg 2019;154:738-44.
88. Binder JS, Scholz M, Ellmann S, et al. Cinematic rendering in anatomy: a crossover study comparing a novel 3D reconstruction technique to conventional computed tomography. Anat Sci Educ 2021;14:22-31.