1. El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011;365:1118-27.

2. Wallace MC, Preen D, Jeffrey GP, Adams LA. The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol 2015;9:765-79.

3. Wong MC, Jiang JY, Goggins WB, Liang M, Fang Y, et al. International incidence and mortality trends of liver cancer: a global profile. Sci Rep 2017;7:45846.

4. Bertuccio P, Turati F, Carioli G, Rodriguez T, La Vecchia C, et al. Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol 2017;67:302-9.

5. Rinella M, Charlton M. The globalization of nonalcoholic fatty liver disease: Prevalence and impact on world health. Hepatology 2016;64:19-22.

6. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 2013;10:686-90.

7. Ertle J, Dechêne A, Sowa JP, Penndorf V, Herzer K, et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011;128:2436-43.

8. Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol 2014;60:110-7.

9. Cho EJ, Kwack MS, Jang ES, You SJ, Lee JH, et al. Relative etiological role of prior hepatitis B virus infection and nonalcoholic fatty liver disease in the development of non-B non-C hepatocellular carcinoma in a hepatitis B-endemic area. Digestion 2011;84:17-22.

10. Okanoue T, Umemura A, Yasui K, Itoh Y. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. J Gastroenterol Hepatol 2011;26:153-62.

11. Ganne-Carrié N, Nahon P. Hepatocellular carcinoma in the setting of alcohol-related liver disease. J Hepatol 2019;70:284-93.

12. Global Burden of Disease Liver Cancer Collaboration. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level results from the global burden of disease study 2015. JAMA Oncol 2017;3:1683-91.

13. Deugnier Y, Turlin B. Iron and hepatocellular carcinoma. J Gastroenterol Hepatol 2001;16:491-4.

14. Sorrentino P, D’Angelo S, Ferbo U, Micheli P, Bracigliano A, et al. Liver iron excess in patients with hepatocellular carcinoma developed on non-alcoholic steato-hepatitis. J Hepatol 2009;50:351-7.

15. Thillai K, Ross P, Sarker D. Molecularly targeted therapy for advanced hepatocellular carcinoma - a drug development crisis? World J Gastrointest Oncol 2016;8:173-85.

16. Nault JC. The end of almost 10 years of negative RCTs in advanced hepatocellular carcinoma. Lancet 2017;389:4-6.

17. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90.

18. Forner A, Reig M, Bruix J. Hepatocellullar carcinoma. Lancet 2018;391:1301-14.

19. Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM. Experimental models of hepatocellular carcinoma. J Hepatol 2008;48:858-79.

20. Bruix J, Han KH, Gores G, Llovet JM, Mazzaferro V. Liver cancer: approaching a personalized care. J Hepatol 2015;62:S144-56.

21. Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018;15:536-54.

22. Lau JKC, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol 2017;241:36-44.

23. Ba Q, Hao M, Huang H, Hou J, Ge A, et al. Iron deprivation suppresses hepatocellular carcinoma growth in experimental studies. Clin Cancer Res 2011;17:7625-33.

24. Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: a review. Tumour Biol 2017;39:1-20.

25. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, et al. Cancer genome landscapes. Science 2013;339:1546-58.

26. Yan J, Caviglia JM, Schwabe RF. Animal models of HCC - when injury meets mutation. J Hepatol 2018;68:193-4.

27. Liu Y, Qi X, Zeng Z, Wang L, Wang J, et al. CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice. Sci Rep 2017;7:2796.

28. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004;113:1774-83.

29. Katz SF, Lechel A, Obenauf AC, Begus-Nahrmann Y, Kraus JM, et al. Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation. Gastroenterology 2012;142:1229-39.e3.

30. Santoni-Rugiu E, Jensen MR, Thorgeirsson SS. Disruption of the pRb/E2F pathway and inhibition of apoptosis are major oncogenic events in liver constitutively expressing c-myc and transforming growth factor alpha. Cancer Res 1998;58:123-34.

31. Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, et al. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J Clin Invest 2017;127:830-42.

32. Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov 2019;9:1124-41.

33. Bakiri L, Wagner EF. Mouse models for liver cancer. Mol Oncol 2013;7:206-23.

34. Dow M, Pyke RM, Tsui BY, Alexandrov LB, Nakagawa H, et al. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc Natl Acad Sci U S A 2018;115:E9879-88.

35. Fidler IJ. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 1986;5:29-49.

36. He S, Hu B, Li C, Lin P, Tang WG, et al. PDXliver: a database of liver cancer patient derived xenograft mouse models. BMC Cancer 2018;18:550.

37. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017;23:1424-35.

38. Sun FX, Tang ZY, Lui KD, Ye SL, Xue Q, et al. Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. Int J Cancer 1996;66:239-43.

39. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006;130:1117-28.

40. Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 2004;36:1306-11.

41. Inokuchi S, Aoyama T, Miura K, Osterreicher CH, Kodama Y, et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci U S A 2010;107:844-9.

42. Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res 2007;5:1159-70.

43. Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D. Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 2005;43:1045-54.

44. Arvola A, Forsander O. Comparison between water and alcohol consumption in six animal species in free choice experiments. Nature 1961;191:819-20.

45. Holmes RS, Dudley JA, Algar EM, Mather PB, Rout UK. Biochemical and genetic studies on enzymes of alcohol metabolism: the mouse as a model organism for human studies. Alcohol Alcohol 1986;21:41-56.

46. Bertola A. Rodent models of fatty liver diseases. Liver Res 2018;2:3-13.

47. Friemel J, Frick L, Unger K, Egger M, Parrotta R, et al. Characterization of HCC mouse models towards an etiology-oriented subtyping approach. Mol Cancer Res 2019;17:1493-502.

48. Ambade A, Satishchandran A, Gyongyosi B, Lowe P, Szabo G. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease. World J Gastroenterol 2016;22:4091-108.

49. Rafacho BPM, Stice CP, Liu C, Greenberg AS, Ausman LM, et al. Inhibition of diethylnitrosamine-initiated alcohol-promoted hepatic inflammation and precancerous lesions by flavonoid luteolin is associated with increased sirtuin 1 activity in mice. Hepatobiliary Surg Nutr 2015;4:124-34.

50. Brandon-Warner E, Walling TL, Schrum LW, McKillop IH. Chronic ethanol feeding accelerates hepatocellular carcinoma progression in a sex-dependent manner in a mouse model of hepatocarcinogenesis. Alcohol Clin Exp Res 2012;36:641-53.

51. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007;317:121-4.

52. De Minicis S, Kisseleva T, Francis H, Baroni GS, Benedetti A, et al. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis 2013;45:450-9.

53. Xin B, Cui Y, Wang Y, Wang L, Yin J, et al. Combined use of alcohol in conventional chemical-induced mouse liver cancer model improves the simulation of clinical characteristics of human hepatocellular carcinoma. Oncol Lett 2017;14:4722-8.

54. Liu K, McCaughan GW. Epidemiology and etiologic associations of non-alcoholic fatty liver disease and associated HCC. Adv Exp Med Biol 2018;1061:3-18.

55. Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 2014;26:549-64.

56. De Minicis S, Agostinelli L, Rychlicki C, Sorice GP, Saccomanno S, et al. HCC development is associated to peripheral insulin resistance in a mouse model of NASH. PLoS One 2014;9:e97136.

57. Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet 2009;18:2975-88.

58. Kanuri G, Bergheim I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci 2013;14:11963-80.

59. Asgharpour A, Cazanave SC, Pacana T, Seneshaw M, Vincent R, et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol 2016;65:579-88.

60. Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol 2018;69:385-95.

61. Kishida N, Matsuda S, Itano O, Shinoda M, Kitago M, et al. Development of a novel mouse model of hepatocellular carcinoma with nonalcoholic steatohepatitis using a high-fat, choline-deficient diet and intraperitoneal injection of diethylnitrosamine. BMC Gastroenterol 2016;16:61.

62. Park EJ, Lee JH, Yu GY, He G, Ali SR, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010;140:197-208.

63. Liang JQ, Teoh N, Xu L, Pok S, Li X, et al. Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat Commun 2018;9:4490.

64. Henderson JM, Polak N, Chen J, Roediger B, Weninger W, et al. Multiple liver insults synergize to accelerate experimental hepatocellular carcinoma. Sci Rep 2018;8:10283.

65. Castro RE, Diehl AM. Towards a definite mouse model of NAFLD. J Hepatol 2018;69:272-4.

66. Fujii M, Shibazaki Y, Wakamatsu K, Honda Y, Kawauchi Y, et al. A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol 2013;46:141-52.

67. Febbraio MA, Reibe S, Shalapour S, Ooi GJ, Watt MJ, et al. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab 2019;29:18-26.

68. Takakura K, Koido S, Fujii M, Hashiguchi T, Shibazaki Y, et al. Characterization of non-alcoholic steatohepatitis-derived hepatocellular carcinoma as a human stratification model in mice. Anticancer Res 2014;34:4849-55.

69. Arfianti E, Larter CZ, Lee S, Barn V, Haigh G, et al. Obesity and diabetes accelerate hepatocarcinogenesis via hepatocyte proliferation independent of NF-κB or Akt/mTORC1. J Clin Transl Res 2016;2:26-37.

70. Teufel A, Itzel T, Erhart W, Brosch M, Wang XY, et al. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology 2016;151:513-25.

71. Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014;26:331-43.

72. Shalapour S, Lin XJ, Bastian IN, Brain J, Burt AD, et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017;551:340-5.

73. Molina-Sánchez P, Lujambio A. Iron overload and liver cancer. J Exp Med 2019;216:723.

74. Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A, et al. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U S A 1998;95:2492-7.

75. Pigeon C, Turlin B, Iancu TC, Leroyer P, Lan JL, et al. Carbonyl-ironsupplementationinduces hepatocyte nuclear changes in BALB/CJ male mice. J Hepatol 1999;30:926-34.

76. Rothenberg BE, Voland JR. β2 knockout mice develop parenchymal iron overload: a putative role for class I genes of the major histocompatibility complex in ironmetabolism. Proc Natl Acad Sci U S A 1996;93:1529-34.

77. Muto Y, Moroishi T, Ichihara K, Nishiyama M, Shimizu H, et al. Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis. J Exp Med 2019;216:950-65.

78. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018;15:397-411.

79. Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017;14:527-39.

80. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013;499:97-101.

81. Achiwa K, Ishigami M, Ishizu Y, Kuzuya T, Honda T, et al. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model. Biochem Biophys Res Commun 2016;470:15-21.

82. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012;21:504-16.

83. Poutahidis T, Varian BJ, Levkovich T, Lakritz JR, Mirabal S, et al. Dietary microbes modulate transgenerational cancer risk. Cancer Res 2015;75:1197-204.

84. Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016;65:830-9.

85. Xu W, Liu K, Chen M, Sun JY, McCaughan GW, et al. Immunotherapy for hepatocellular carcinoma: recent advances and future perspectives. Ther Adv Med Oncol 2019;11:1758835919862692.

Hepatoma Research
ISSN 2454-2520 (Online) 2394-5079 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: