REFERENCES
1. Millevolte AXT, Dingle AM, Ness JP, et al. Improving the selectivity of an osseointegrated neural interface: proof of concept for housing sieve electrode arrays in the medullary canal of long bones. Front Neurosci 2021;15:613844.
2. Karczewski AM, Dingle AM, Poore SO. The need to work arm in arm: calling for collaboration in delivering neuroprosthetic limb replacements. Front Neurorobot 2021;15:711028.
3. Dingle AM, Ness JP, Novello J, et al. Methodology for creating a chronic osseointegrated neural interface for prosthetic control in rabbits. J Neurosci Methods 2020;331:108504.
4. Dingle AM, Ness JP, Novello J, et al. Experimental basis for creating an osseointegrated neural interface for prosthetic control: a pilot study in rabbits. Mil Med 2020;185:462-9.
5. Aman M, Bergmeister KD, Festin C, et al. Experimental testing of bionic peripheral nerve and muscle interfaces: animal model considerations. Front Neurosci 2020;13:1422.
6. Clites TR, Carty MJ, Srinivasan SS, Talbot SG, Brånemark R, Herr HM. Caprine models of the agonist-antagonist myoneural interface implemented at the above- and below-knee amputation levels. Plast Reconstr Surg 2019;144:p 218e-229e.
7. Jeyapalina S, Beck JP, Agarwal J, Bachus KN. A 24-month evaluation of a percutaneous osseointegrated limb-skin interface in an ovine amputation model. J Mater Sci Mater Med 2017;28:179.
8. Jeyapalina S, Beck JP, Drew A, Bloebaum RD, Bachus KN. Variation in bone response to the placement of percutaneous osseointegrated endoprostheses: a 24-month follow-up in sheep. PLoS One 2019;14:e0221850.
9. Hoellwarth JS, Tetsworth K, Rozbruch SR, Handal MB, Coughlan A, Al Muderis M. Osseointegration for amputees: current implants, techniques, and future directions. JBJS Rev 2020;8:e0043.
10. Shelton TJ, Beck JP, Bloebaum RD, Bachus KN. Percutaneous osseointegrated prostheses for amputees: limb compensation in a 12-month ovine model. J Biomech 2011;44:2601-6.
11. Sartoretto SC, Uzeda MJ, Miguel FB, Nascimento JR, Ascoli F, Calasans-Maia MD. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop Bras 2016;24:262-6.
12. Karczewski AM, Zeng W, Stratchko LM, Bachus KN, Poore SO, Dingle AM. Clinical basis for creating an osseointegrated neural interface. Front Neurosci 2022;16:828593.
13. Settell ML, Pelot NA, Knudsen BE, et al. Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation. J Neural Eng 2020;17:026022.
14. Blanz SL, Musselman ED, Settell ML, et al. Spatially selective stimulation of the pig vagus nerve to modulate target effect versus side effect. J Neural Eng 2023;20:016051.
15. Jeyapalina S, Beck JP, Bachus KN, Chalayon O, Bloebaum RD. Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model. Clin Orthop Relat Res 2014;472:2966-77.
16. Duda GN, Eckert-Hübner K, Sokiranski R, Kreutner A, Miller R, Claes L. Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J Biomech 1998;31:201-10.
17. Grisez BT, Hanselman AE, Boukhemis KW, Lalli TAJ, Lindsey BA. Osseointegrated transcutaneous device for amputees: a pilot large animal model. Adv Orthop 2018;2018:4625967.
18. Schuurman SO, Kersten W, Weijs WA. The equine hind limb is actively stabilized during standing. J Anat 2003;202:355-62.