1. Ruszkiewicz DM, Sanders D, O'Brien R, et al. Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry - a feasibility study. EClinicalMedicine 2020;29:100609.
2. Henderson B, Ruszkiewicz DM, Wilkinson M, et al. A benchmarking protocol for breath analysis: the peppermint experiment. J Breath Res 2020;14:046008.
3. Boesveldt S, Postma EM, Boak D, et al. Anosmia-a clinical review. Chem Senses 2017;42:513-23.
4. Marinosci A, Landis BN, Calmy A. Possible link between anosmia and COVID-19: sniffing out the truth. Eur Arch Otorhinolaryngol 2020;277:2149-50.
5. Palao M, Fernández-Díaz E, Gracia-Gil J, Romero-Sánchez CM, Díaz-Maroto I, Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord 2020;45:102377.
6. Wang L, Shen Y, Li M, et al. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Neurol 2020;267:2777-89.
7. Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015;235:277-87.
8. Wang P. Combination of serological total antibody and RT-PCR test for detection of SARS-COV-2 infections. J Virol Methods 2020;283:113919.
9. Rannan-Eliya RP, Wijemunige N, Gunawardana JRNA, et al. Increased intensity of PCR testing reduced COVID-19 transmission within countries during the first pandemic wave. Health Aff (Millwood) 2021;40:70-81.
10. Garg A, Ghoshal U, Patel SS, et al. Evaluation of seven commercial RT-PCR kits for COVID-19 testing in pooled clinical specimens. J Med Virol 2021;93:2281-6.
11. Kanji JN, Zelyas N, MacDonald C, et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol J 2021;18:13.
12. Grover A, Lall B. A novel method for removing baseline drifts in multivariate chemical sensor. IEEE Trans Instrum Meas 2020;69:7306-16.
13. Grassin-Delyle S, Roquencourt C, Moine P, et al. Garches COVID-19 Collaborative Group RECORDS Collaborators and Exhalomics® Collaborators. Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine 2021;63:103154.
14. Giovannini G, Haick H, Garoli D. Detecting COVID-19 from Breath: a game changer for a big challenge. ACS Sens 2021;6:1408-17.
15. Farraia MV, Cavaleiro Rufo J, Paciência I, Mendes F, Delgado L, Moreira A. The electronic nose technology in clinical diagnosis: a systematic review. Porto Biomed J 2019;4:e42.
16. Dragonieri S, Pennazza G, Carratu P, Resta O. Electronic nose technology in respiratory diseases. Lung 2017;195:157-65.
17. Licht JC, Grasemann H. Potential of the electronic nose for the detection of respiratory diseases with and without Infection. Int J Mol Sci 2020;21:9416.
18. Dragonieri S, Schot R, Mertens BJ, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 2007;120:856-62.
19. Tenero L, Sandri M, Piazza M, Paiola G, Zaffanello M, Piacentini G. Electronic nose in discrimination of children with uncontrolled asthma. J Breath Res 2020;14:046003.
20. Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. Sensors (Basel) 2011;11:1105-76.
21. Kalidoss R, Umapathy S. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator. Biomed Microdevices 2019;22:2.
22. Miller TC, Morgera SD, Saddow SE, Takshi A, Palm M. Electronic nose with detection method for alcohol, acetone, and carbon monoxide in coronavirus disease 2019 breath simulation model. IEEE Sensors J 2021:1-9.
23. Marco S, Gutierrez-galvez A. Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sensors J 2012;12:3189-214.
24. Monroy JG, González-Jiménez J, Blanco JL. Overcoming the slow recovery of MOX gas sensors through a system modeling approach. Sensors (Basel) 2012;12:13664-80.
25. Korotcenkov G, Cho B. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens Actuators B Chem 2011;156:527-38.
26. Sharma RK, Chan PC, Tang Z, Yan G, Hsing I, Sin JK. Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices. Sens Actuators B Chem 2001;81:9-16.
27. Natale C, Martinelli E, D’amico A. Counteraction of environmental disturbances of electronic nose data by independent component analysis. Sens Actuators B Chem 2002;82:158-65.
28. Wold S, Antti H, Lindgren F, Öhman J. Orthogonal signal correction of near-infrared spectra. Chemom Intell Lab Syst 1998;44:175-85.
29. Hines E, Llobet E, Gardner J. Electronic noses: a review of signal processing techniques. IEE Proc, Circuits Devices Syst 1999;146:297.
30. Gardner JW, Bartlett PN. Electronic noses. Principles and applications. Meas Sci Technol 2000;11:1087.
31. Llobet E, Brezmes J, Ionescu R, et al. Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a micro-hotplate gas sensor. Sens Actuators B Chem 2002;83:238-44.
32. Zuppa M, Distante C, Persaud KC, Siciliano P. Recovery of drifting sensor responses by means of DWT analysis. Sens Actuators B Chem 2007;120:411-6.
33. Ziyatdinov A, Marco S, Chaudry A, Persaud K, Caminal P, Perera A. Drift compensation of gas sensor array data by common principal component analysis. Sens Actuators B Chem 2010;146:460-5.
34. Marco S, Ortega A, Pardo A, Samitier J. Gas identification with tin oxide sensor array and self-organizing maps: adaptive correction of sensor drifts. IEEE Trans Instrum Meas 1998;47:316-21.
35. Fenske JD, Paulson SE. Human breath emissions of VOCs. J Air Waste Manag Assoc 1999;49:594-8.
36. Artursson T, Eklöv T, Lundström I, Mårtensson P, Sjöström M, Holmberg M. Drift correction for gas sensors using multivariate methods. J Chemom 2000;14:711-23.
37. Ding H, Liu JH, Shen ZR. Drift reduction of gas sensor by wavelet and principal component analysis. Sens Actuators B Chem 2003;96:354-63.
38. Laref R, Ahmadou D, Losson E, Siadat M. Orthogonal signal correction to improve stability regression model in gas sensor systems. J Sens 2017;2017:1-8.
39. Ahmadou D, Laref R, Losson E, Siadat M. .
40. Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD Group. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015;351:h5527.
41. Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73.
42. Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020;14:5135-42.
43. Gao L, Ding YS, Dai H, Huang ZD, Shao SH. .
44. Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181:894-904.e9.
45. Hoffmann M, Hofmann-winkler H, Pöhlmann S. . Priming time: how cellular proteases arm coronavirus spike proteins. In: Böttcher-friebertshäuser E, Garten W, Klenk HD, editors. Activation of Viruses by Host Proteases. Cham: Springer International Publishing; 2018. p. 71-98.
46. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. EXCLI J 2020;19:410-7.
47. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281-92.e6.
48. Dong D, Tang Z, Wang S, et al. The role of imaging in the detection and management of COVID-19: a review. IEEE Rev Biomed Eng 2021;14:16-29.
49. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. . Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
50. Gui M, Song W, Zhou H, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 2017;27:119-29.
51. Cheung CY, Poon LL, Ng IH, et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 2005;79:7819-26.
52. Doty RL, Kamath V. The influences of age on olfaction: a review. Front Psychol 2014;5:20.
53. Sungnak W, Huang N, Bécavin C, et al. HCA Lung Biological Network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26:681-7.
54. Wenig BM. Undifferentiated malignant neoplasms of the sinonasal tract. Arch Pathol Lab Med 2009;133:699-712.
56. Borden NM, Forseen SE, Stefan C. . Imaging anatomy of the human brain: a comprehensive atlas including adjacent structures. New York: Springer Medical Publishing. 2016.
57. Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg 2020;194:105921.
58. Kim JM, Chung YS, Jo HJ, et al. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Public Health Res Perspect 2020;11:3-7.
59. Ramos FJ, Palomino García A, Jiménez Hernández MD. Neurology during the pandemic. Is COVID-19 changing the organisation of neurology departments? Neurologia (Engl Ed) 2020;35:269-71.
60. Ryan MA, Zhou H, Buehler MG, et al. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose. IEEE Sens J 2004;4:337-47.
61. Galougahi MK, Ghorbani J, Bakhshayeshkaram M, Naeini AS, Haseli S. Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: the first report. Acad Radiol 2020;27:892-3.
62. Caruso D, Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Melcangi RC. Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. J Neuroendocrinol 2010;22:1137-47.
63. Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 2006;7:932-41.
65. Stefano GB, Esch T, Kream RM. Potential immunoregulatory and antiviral/SARS-CoV-2 activities of nitric oxide. Med Sci Monit 2020;26:e925679.
66. Babizhayev MA, Deyev AI. Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production. Am J Ther 2012;19:e25-47.
67. Akaike T, Suga M, Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 1998;217:64-73.
68. Lundberg JO. Airborne nitric oxide: inflammatory marker and aerocrine messenger in man. Acta Physiol Scand Suppl 1996;633:1-27.
69. Lourenço C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites 2014;4:465-98.
70. Abdelrahman Z, Li M, Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses. Front Immunol 2020;11:552909.
71. Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015;5:140-63.
72. Wilson AD. Biomarker metabolite signatures pave the way for electronic-nose applications in early clinical disease diagnoses. Curr Metabolom 2017;5:90-101.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.