REFERENCES

1. Ruszkiewicz DM, Sanders D, O'Brien R, et al. Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry - a feasibility study. EClinicalMedicine 2020;29:100609.

2. Henderson B, Ruszkiewicz DM, Wilkinson M, et al. A benchmarking protocol for breath analysis: the peppermint experiment. J Breath Res 2020;14:046008.

3. Boesveldt S, Postma EM, Boak D, et al. Anosmia-a clinical review. Chem Senses 2017;42:513-23.

4. Marinosci A, Landis BN, Calmy A. Possible link between anosmia and COVID-19: sniffing out the truth. Eur Arch Otorhinolaryngol 2020;277:2149-50.

5. Palao M, Fernández-Díaz E, Gracia-Gil J, Romero-Sánchez CM, Díaz-Maroto I, Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord 2020;45:102377.

6. Wang L, Shen Y, Li M, et al. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Neurol 2020;267:2777-89.

7. Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015;235:277-87.

8. Wang P. Combination of serological total antibody and RT-PCR test for detection of SARS-COV-2 infections. J Virol Methods 2020;283:113919.

9. Rannan-Eliya RP, Wijemunige N, Gunawardana JRNA, et al. Increased intensity of PCR testing reduced COVID-19 transmission within countries during the first pandemic wave. Health Aff (Millwood) 2021;40:70-81.

10. Garg A, Ghoshal U, Patel SS, et al. Evaluation of seven commercial RT-PCR kits for COVID-19 testing in pooled clinical specimens. J Med Virol 2021;93:2281-6.

11. Kanji JN, Zelyas N, MacDonald C, et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol J 2021;18:13.

12. Grover A, Lall B. A novel method for removing baseline drifts in multivariate chemical sensor. IEEE Trans Instrum Meas 2020;69:7306-16.

13. Grassin-Delyle S, Roquencourt C, Moine P, et al. Garches COVID-19 Collaborative Group RECORDS Collaborators and Exhalomics® Collaborators. Metabolomics of exhaled breath in critically ill COVID-19 patients: a pilot study. EBioMedicine 2021;63:103154.

14. Giovannini G, Haick H, Garoli D. Detecting COVID-19 from Breath: a game changer for a big challenge. ACS Sens 2021;6:1408-17.

15. Farraia MV, Cavaleiro Rufo J, Paciência I, Mendes F, Delgado L, Moreira A. The electronic nose technology in clinical diagnosis: a systematic review. Porto Biomed J 2019;4:e42.

16. Dragonieri S, Pennazza G, Carratu P, Resta O. Electronic nose technology in respiratory diseases. Lung 2017;195:157-65.

17. Licht JC, Grasemann H. Potential of the electronic nose for the detection of respiratory diseases with and without Infection. Int J Mol Sci 2020;21:9416.

18. Dragonieri S, Schot R, Mertens BJ, et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol 2007;120:856-62.

19. Tenero L, Sandri M, Piazza M, Paiola G, Zaffanello M, Piacentini G. Electronic nose in discrimination of children with uncontrolled asthma. J Breath Res 2020;14:046003.

20. Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. Sensors (Basel) 2011;11:1105-76.

21. Kalidoss R, Umapathy S. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator. Biomed Microdevices 2019;22:2.

22. Miller TC, Morgera SD, Saddow SE, Takshi A, Palm M. Electronic nose with detection method for alcohol, acetone, and carbon monoxide in coronavirus disease 2019 breath simulation model. IEEE Sensors J 2021:1-9.

23. Marco S, Gutierrez-galvez A. Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sensors J 2012;12:3189-214.

24. Monroy JG, González-Jiménez J, Blanco JL. Overcoming the slow recovery of MOX gas sensors through a system modeling approach. Sensors (Basel) 2012;12:13664-80.

25. Korotcenkov G, Cho B. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens Actuators B Chem 2011;156:527-38.

26. Sharma RK, Chan PC, Tang Z, Yan G, Hsing I, Sin JK. Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices. Sens Actuators B Chem 2001;81:9-16.

27. Natale C, Martinelli E, D’amico A. Counteraction of environmental disturbances of electronic nose data by independent component analysis. Sens Actuators B Chem 2002;82:158-65.

28. Wold S, Antti H, Lindgren F, Öhman J. Orthogonal signal correction of near-infrared spectra. Chemom Intell Lab Syst 1998;44:175-85.

29. Hines E, Llobet E, Gardner J. Electronic noses: a review of signal processing techniques. IEE Proc, Circuits Devices Syst 1999;146:297.

30. Gardner JW, Bartlett PN. Electronic noses. Principles and applications. Meas Sci Technol 2000;11:1087.

31. Llobet E, Brezmes J, Ionescu R, et al. Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a micro-hotplate gas sensor. Sens Actuators B Chem 2002;83:238-44.

32. Zuppa M, Distante C, Persaud KC, Siciliano P. Recovery of drifting sensor responses by means of DWT analysis. Sens Actuators B Chem 2007;120:411-6.

33. Ziyatdinov A, Marco S, Chaudry A, Persaud K, Caminal P, Perera A. Drift compensation of gas sensor array data by common principal component analysis. Sens Actuators B Chem 2010;146:460-5.

34. Marco S, Ortega A, Pardo A, Samitier J. Gas identification with tin oxide sensor array and self-organizing maps: adaptive correction of sensor drifts. IEEE Trans Instrum Meas 1998;47:316-21.

35. Fenske JD, Paulson SE. Human breath emissions of VOCs. J Air Waste Manag Assoc 1999;49:594-8.

36. Artursson T, Eklöv T, Lundström I, Mårtensson P, Sjöström M, Holmberg M. Drift correction for gas sensors using multivariate methods. J Chemom 2000;14:711-23.

37. Ding H, Liu JH, Shen ZR. Drift reduction of gas sensor by wavelet and principal component analysis. Sens Actuators B Chem 2003;96:354-63.

38. Laref R, Ahmadou D, Losson E, Siadat M. Orthogonal signal correction to improve stability regression model in gas sensor systems. J Sens 2017;2017:1-8.

39. Ahmadou D, Laref R, Losson E, Siadat M. .

40. Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD Group. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015;351:h5527.

41. Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73.

42. Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020;14:5135-42.

43. Gao L, Ding YS, Dai H, Huang ZD, Shao SH. .

44. Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181:894-904.e9.

45. Hoffmann M, Hofmann-winkler H, Pöhlmann S. . Priming time: how cellular proteases arm coronavirus spike proteins. In: Böttcher-friebertshäuser E, Garten W, Klenk HD, editors. Activation of Viruses by Host Proteases. Cham: Springer International Publishing; 2018. p. 71-98.

46. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. EXCLI J 2020;19:410-7.

47. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281-92.e6.

48. Dong D, Tang Z, Wang S, et al. The role of imaging in the detection and management of COVID-19: a review. IEEE Rev Biomed Eng 2021;14:16-29.

49. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. . Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.

50. Gui M, Song W, Zhou H, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 2017;27:119-29.

51. Cheung CY, Poon LL, Ng IH, et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 2005;79:7819-26.

52. Doty RL, Kamath V. The influences of age on olfaction: a review. Front Psychol 2014;5:20.

53. Sungnak W, Huang N, Bécavin C, et al. HCA Lung Biological Network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26:681-7.

54. Wenig BM. Undifferentiated malignant neoplasms of the sinonasal tract. Arch Pathol Lab Med 2009;133:699-712.

55. Olfactory Pathways and Limbic System. Available from: http://www.neuroanatomy.wisc.edu/coursebook/neuro3(2).pdf. [Last accessed on 27 Jul 2021].

56. Borden NM, Forseen SE, Stefan C. . Imaging anatomy of the human brain: a comprehensive atlas including adjacent structures. New York: Springer Medical Publishing. 2016.

57. Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg 2020;194:105921.

58. Kim JM, Chung YS, Jo HJ, et al. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Public Health Res Perspect 2020;11:3-7.

59. Ramos FJ, Palomino García A, Jiménez Hernández MD. Neurology during the pandemic. Is COVID-19 changing the organisation of neurology departments? Neurologia (Engl Ed) 2020;35:269-71.

60. Ryan MA, Zhou H, Buehler MG, et al. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose. IEEE Sens J 2004;4:337-47.

61. Galougahi MK, Ghorbani J, Bakhshayeshkaram M, Naeini AS, Haseli S. Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: the first report. Acad Radiol 2020;27:892-3.

62. Caruso D, Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Melcangi RC. Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. J Neuroendocrinol 2010;22:1137-47.

63. Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 2006;7:932-41.

64. Miller TC. .

65. Stefano GB, Esch T, Kream RM. Potential immunoregulatory and antiviral/SARS-CoV-2 activities of nitric oxide. Med Sci Monit 2020;26:e925679.

66. Babizhayev MA, Deyev AI. Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production. Am J Ther 2012;19:e25-47.

67. Akaike T, Suga M, Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 1998;217:64-73.

68. Lundberg JO. Airborne nitric oxide: inflammatory marker and aerocrine messenger in man. Acta Physiol Scand Suppl 1996;633:1-27.

69. Lourenço C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites 2014;4:465-98.

70. Abdelrahman Z, Li M, Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses. Front Immunol 2020;11:552909.

71. Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015;5:140-63.

72. Wilson AD. Biomarker metabolite signatures pave the way for electronic-nose applications in early clinical disease diagnoses. Curr Metabolom 2017;5:90-101.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/