REFERENCES
1. Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Available from https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf. [Last accessed on 1 Feb 2021].
2. de la Torre J. The vascular hypothesis of Alzheimer’s disease: a key to preclinical prediction of dementia using neuroimaging. J Alzheimers Dis 2018;63:35-52.
3. Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017;131:2451-68.
4. Navarro V, Sanchez-Mejias E, Jimenez S, et al. Microglia in Alzheimer’s disease: activated, dysfunctional or degenerative. Front Aging Neurosci 2018;10:140.
6. Wang N, He J, Pan C, et al. Resveratrol activates autophagy via the AKT/mTOR signaling pathway to improve cognitive dysfunction in rats with chronic cerebral hypoperfusion. Front Neurosci 2019;13:859.
7. Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 2007;54:162-80.
8. Wang DP, Chen SH, Wang D, et al. Neuroprotective effects of andrographolide on chronic cerebral hypoperfusion-induced hippocampal neuronal damage in rats possibly via PTEN/AKT signaling pathway. Acta Histochem 2020;122:151514.
9. Yao ZH, Yao XL, Zhang SF, Hu JC, Zhang Y. Tripchlorolide may improve spatial cognition dysfunction and synaptic plasticity after chronic cerebral hypoperfusion. Neural Plast 2019;2019:2158285.
10. Wang DP, Yin H, Lin Q, et al. Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion. Naunyn Schmiedebergs Arch Pharmacol 2019;392:1277-84.
11. Pirmoradi Z, Yadegari M, Moradi A, Khojasteh F, Zare Mehrjerdi F. Effect of berberine chloride on caspase-3 dependent apoptosis and antioxidant capacity in the hippocampus of the chronic cerebral hypoperfusion rat model. Iran J Basic Med Sci 2019;22:154-9.
12. Hei Y, Chen R, Yi X, Long Q, Gao D, Liu W. HMGB1 neutralization attenuates hippocampal neuronal death and cognitive impairment in rats with chronic cerebral hypoperfusion via suppressing inflammatory responses and oxidative stress. Neuroscience 2018;383:150-9.
13. Azimi M, Ashour AE, Fuaat AA, Mohamed WMY. Neuroprotective effects of coenzyme Q10 and vitamin-E in chronic cerebral hypoperfusion-induced neurodegeneration in rats. Int J Nutr 2020;10:35-42.
14. Mohamed WMY, Sayeed S, Saxena AK, Oothuman P. Oxidative stress status and neuroprotection of tocotrienols in chronic cerebral hypoperfusion-induced neurodegeneration rat animal model. Int J Nutr 2018;8:47-52.
15. Arikawa AY, Samavat H, Gross M, Kurzer MS. Plasma F2-isoprostanes are positively associated with glycemic load, but inversely associated with dietary polyunsaturated fatty acids and insoluble fiber in postmenopausal women. J Nutr 2017;147:1693-9.
16. Milne GL, Dai Q, Roberts LJ 2nd. The isoprostanes-25 years later. Biochim Biophys Acta 2015;1851:433-45.
17. Ma F, Liu D. Sketch of the edible bird’s nest and its important bioactivities. Food Research International 2012;48:559-67.
18. Marcone MF. Characterization of the edible bird’s nest the “Caviar of the East”. Food Research International 2005;38:1125-34.
19. Ramji MFS, Koon LC, Rahman MA. Roosting and nest-building behaviour of the white-nest swiftlet Aerodramus fuciphagus (Thunberg) (Aves: Apodidae) in farmed colonies. Raffl es Bull Zool 2013;29:225-35.
20. Chua KH, Lee TH, Nagandran K, et al. Edible Bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: in vitro study. BMC Complement Altern Med 2013;13:19.
21. Matsukawa N, Matsumoto M, Bukawa W, et al. Improvement of bone strength and dermal thickness due to dietary edible bird’s nest extract in ovariectomized rats. Biosci Biotechnol Biochem 2011;75:590-2.
22. Hu Q, Li G, Yao, et al. Edible bird’s nest enhances antioxidant capacity and increases lifespan in drosophila melanogaster. Cell Mol Biol (Noisyle-grand) 2016;62:116-22.
23. Zainal Abidin F, Hui CK, Luan NS, Mohd Ramli ES, Hun LT, Abd Ghafar N. Effects of edible bird’s nest (EBN) on cultured rabbit corneal keratocytes. BMC Complement Altern Med 2011;11:94.
24. Albishtue AA, Yimer N, Zakaria MZA, et al. Edible bird’s nest impact on rats’ uterine histomorphology, expressions of genes of growth factors and proliferating cell nuclear antigen, and oxidative stress level. Vet World 2018;11:71-9.
25. Guo CT, Takahashi T, Bukawa W, et al. Edible bird’s nest extract inhibits influenza virus infection. Antiviral Res 2006;70:140-6.
26. Haghani A, Mehrbod P, Safi N, Kadir FA, Omar AR, Ideris A. Edible bird’s nest modulate intracellular molecular pathways of influenza A virus infected cells. BMC Complement Altern Med 2017;17:22.
27. Yida Z, Imam MU, Ismail M, Ismail N, Hou Z. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats. Drug Des Devel Ther 2015;9:3951-9.
28. Hou Z, He P, Imam MU, et al. Edible Bird’s Nest prevents menopause-related memory and cognitive decline in rats via increased hippocampal Sirtuin-1 expression. Oxid Med Cell Longev 2017;2017:7205082.
29. Hou Z, Imam MU, Ismail M, et al. Lactoferrin and ovotransferrin contribute toward antioxidative effects of Edible Bird’s Nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells. Biosci Biotechnol Biochem 2015;79:1570-8.
30. Careena S, Sani D, Tan SN, et al. Effect of Edible Bird’s Nest extract on lipopolysaccharide-induced impairment of learning and memory in wistar rats. Evid Based Complement Alternat Med 2018;2018:9318789.
31. Pozsgay V, Jennings H, Kasper DL. 4,8-anhydro-N-acetylneuraminic acid. Isolation from edible bird’s nest and structure determination. Eur J Biochem 1987;162:445-50.
32. Kong Y, Keung W, Yip T, Ko K, Tsao S, Ng M. Evidence that epidermal growth factor is present in swiftlet’s (Collocalia) nest. Comparative Biochemistry and Physiology Part B:. Comparative Biochemistry 1987;87:221-6.
33. Norhayati MK Jr, Azman O, Wan Nazaimoon W. Preliminary study of the nutritional content of malaysian edible bird’s nest. Malays J Nutr 2010;16:389-96.
34. Babji AS, Etty Syarmila IK, Nur ‘Aliah D, et al. Assessment on bioactive components of hydrolysed edible bird nest. Int Food Res J 2018;25:1936-41.
35. Saxena AK, Abdul-Majeed SS, Gurtu S, Mohamed WM. Investigation of redox status in chronic cerebral hypoperfusion-induced neurodegeneration in rats. Appl Transl Genom 2015;5:30-2.
36. Alzheimer’s Disease International. World Alzheimer Report 2015. The global impact of dementia: an analysis of prevalence, incidence, cost and trends. Available online from: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf. [Last accessed on 1 Feb 2021].
37. Cazarim Mde S, Moriguti JC, Ogunjimi AT, Pereira LR. Perspectives for treating Alzheimer’s disease: a review on promising pharmacological substances. Sao Paulo Med J 2016;134:342-54.
38. Zhang D, Xiao Y, Lv P, et al. Edaravone attenuates oxidative stress induced by chronic cerebral hypoperfusion injury: role of ERK/Nrf2/HO-1 signaling pathway. Neurol Res 2018;40:1-10.
39. Luca M, Luca A, Calandra C. The role of oxidative damage in the pathogenesis and progression of Alzheimer’s Disease and vascular dementia. Oxid Med Cell Longev 2015;2015:504678.
40. Fanoudi S, Alavi MS, Hosseini M, Sadeghnia HR. Nigella sativa and thymoquinone attenuate oxidative stress and cognitive impairment following cerebral hypoperfusion in rats. Metab Brain Dis 2019;34:1001-10.
41. Zhao X, Fang J, Li S, et al. Artemisinin attenuated Hydrogen Peroxide (H2O2)-induced oxidative injury in SH-SY5Y and hippocampal neurons via the activation of AMPK pathway. Int J Mol Sci 2019;20:2680.
42. Zhang J, Liu Y, Zheng Y, et al. TREM-2-p38 MAPK signaling regulates neuroinflammation during chronic cerebral hypoperfusion combined with diabetes mellitus. J Neuroinflammation 2020;17:2.
43. Zulfiqar S, Garg P, Nieweg K. Contribution of astrocytes to metabolic dysfunction in the Alzheimer’s disease brain. Biol Chem 2019;400:1113-27.
44. Zeng Q, Huang Z, Zhang J, et al. 3’-Daidzein sulfonate sodium protects against chronic cerebral hypoperfusion-mediated cognitive impairment and hippocampal damage via activity-regulated cytoskeleton-associated protein upregulation. Front Neurosci 2019;13:104.
45. Yida Z, Imam MU, Ismail M, et al. Edible Bird’s Nest attenuates high fat diet-induced oxidative stress and inflammation via regulation of hepatic antioxidant and inflammatory genes. BMC Complement Altern Med 2015;15:310.
46. Yida Z, Imam MU, Ismail M. In vitro bioaccessibility and antioxidant properties of edible bird’s nest following simulated human gastro-intestinal digestion. BMC Complement Altern Med 2014;14:468.
47. Zhiping H, Imam MU, Ismail M, et al. Effects of edible bird’s nest on hippocampal and cortical neurodegeneration in ovariectomized rats. Food Funct 2015;6:1701-11.
48. Xie Y, Zeng H, Huang Z, et al. Effect of maternal administration of Edible Bird’s Nest on the learning and memory abilities of suckling offspring in mice. Neural Plast 2018;2018:7697261.