REFERENCES

1. Berrios GE. Alzheimer’s disease: a conceptual history. Inter J Geriatric 1990;5:355-65.

2. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353-6.

3. McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiaty 2003;27:741-9.

4. Gorelick PB, Scuteri A, Black SE, Decaarli C, Greenberg SM, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American heart association/American stroke association. Stroke 2011;42:2672-713.

5. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011;1:a006189.

6. Alzheimer A. Über eine eigenartige Erkrankung der Himrinde. Allgemeine Zeitschrift fur Psychiatrie űnd phychish-Gerichtliche Medizin (Berlin) 1907;64:146-8.

7. Stelzmann RA, Schnitzlein HN, Murtagh FR. An english translation of Alzhimer’s 1907 paper “Uber eine eigenantrige Erkenkung der Hirnrinde. Clin Anat 1995;8:429-31.

8. Mufson EJ, Counts SE, Ginsberg ST, Mahady L, Perez SE, et al. Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front Neurosci 2019;13:533.

9. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018;141:1917-33.

10. Alzheimer’s Association, Available from: www.alz.org/. [Last accessed on 24 Jul 2020].

11. Irwin K, Sexton C, Daniel T, Lawlor B, Naci L. Healthy aging and dementia: two roads diverging in midlife? Front Aging Neurosci 2018;20:275-95.

12. Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017;13:1-7.

13. Prince M, Bryce R, Albanese E, Wimo A, Rieiro W, et al. The global prevalence of dementia: A systematic review and meta-analysis. Alzheimers Dement 2013;9:63-75.

14. Geral C, Angelova A, Lesieur S. From molecular to nanotechnology strategies for delivery of neurotrophins: Emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 2013;5:127-67.

15. Mitra S, Behbahani H, Eriksdotter M. Innovative therapy for Alzheimer’s disease-With focus on biodelivery of NGF. Front Neurosci 2019;13:38.

16. Rafii MS, Tuszynski MH, Thomas RG, Barba D, Brewer JB, et al. Adeno-associated viral vector (Serotype 2)-nerve growth factor for patients with Alzheimer disease. JAMA Neurol 2018;5:834-41.

17. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, et al. BDNF as a promising therapeutic agent in Parkinson’s disease. Int J Mol Sci 2020;21:1170.

18. Massa SM, Yang T, Xie Y, Shi J, Bilgen M, et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 2010;120:1774-85.

19. Albiston AL, Diwakaria S, Fernando RN, Mountford SJ, Yeatman H, et al. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol 2011;164:37-47.

20. Briggs R, Kennelly SP, O’Neill DO. Drug treatments in Alzheimer’s disease. Clin Med 2016;16:247-53.

21. Wright JW, Kawas LH, Harding JW. A role for the brain RAS in Alzheimer’s and Parkinson’s diseases. Front Endocrin 2013;4:158.

22. Melnikova I. Therapies for Alzheimer’s disease. Nat Rev Drug Discov 2007;6:341-2.

23. Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin Interv Aging 2009;4:367-77.

24. Vasser R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 2014;6:89-103.

25. Prins ND, Scheltens P. Treating Alzheimer’s disease with monoclonal antibodies: current status and outlook for the future. Alzheimers Res Ther 2013;5:56-66.

26. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 2014;370:322-33.

27. .

28. Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, et al. Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild to moderate Alzheimer’s disease. J Alzheimers Dis 2015;44:705-20.

29. U.S. National Library of Medicine. ClinicalTrials.gov website. Available from: //clinicaltrials.gov/. [Last accessed on 24 Jul 2017].

30. Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014;6:37-45.

31. Wright JW, Harding JW. Contributions by the brain renin-angiotensin system to memory, cognition, and Alzheimer’s disease. J Alzheimers Dis 2019;67:469-80.

32. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 1997;18:351-7.

33. De la Torre JC. Alzheimer’s disease: How does it start? J Alzheimers Dis 2002;4:497-512.

34. Douchamps V, Mathis C. A second wind for the cholinergic system in Alzheimer’s therapy. Behav Pharmacol 2017;28:112-23.

35. Albayram O, Herbert MK, Kondo A, Tsai CY, Baxley S, et al. Function and regulation of tau conformations in the development and treatment of traumatic brain injury and neurodegeneration. Cell Biosci 2016;6:59.

36. Mez J, Daneshyar DH, Kiernan PT, Abdolmohammadi B, Alarez VE, et al. Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA 2017;318:360-70.

37. Randolph C, Karantzoulis S, Guskiewicz K. Prevalence and characterization of mild cognitive impairment in retired national football league players. J Int Neuropsychol Soc 2013;19:873-80.

38. FDA-NIH biomarker working group, BEST (Biomarkers, EndpointS, and other Tools) resource, Silver Spring (MD): Food and Drug Administration; ssary, 2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK338448. [Last accessed on 24 Jul 2017].

39. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 2016;12:719-32.

40. Labzin LI, Heneka MT, Latz E. Innate immunity and neurodegeneration. Annu Rev Med 2018;69:437-49.

41. Mawanda F, Wallace R. Can infections cause Alzheimer’s disease? Epidemiol Rev 2013;35:161-80.

42. Tramutola A, Lanzillotta C, Perluigi M, Allan Butterfield D. Oxidative stress, protein modification and Alzheimer disease. Bran Res Bull 2017;133:88-96.

43. Abbott A. The brain inflamed. Nature 2018;556:426-8.

44. Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, et al. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 2015;3:31.

45. Krasemann S, Madore C, Cialic R, Raufeld C, Calcagno N, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 2017;47:566-81.

46. Ardura-Fabregat A, Boddeke EW, Boza-Serrano A, Brioschi S, Castro-Gomez S, et al. Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 2017;31:1057-82.

47. Fortea J, Vilaplana E, Carmona-Iragui M, Benejam B, Videla L, et al. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. Lancet 2020;395:1988-97.

48. Nimmrich V, Draguhn A, Axmacher N. Neuronal network oscillations in neurodegenerative diseases. Neuromol Med 2015;17:270-84.

49. Ally BA, McKeever JD, Waring JD, Budson AE. Preserved frontal memorial processing for pictures in patients with mild cognitive impairment. Neuropsychologia 2009;47:2044-55.

50. Benedictus MR, Leeuwis AE, Binnewijzend MA, Kuijer JP, Scheltens P, et al. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur Radiol 2017;27:1169-75.

51. De la Torre JC. Carotid artery ultrasound and echocardiography testing to lower the prevalence of Alzheimer’s disease. J Stroke Cerebrovasc Dis 2009;18:319-28.

52. De la Torre JC. Are major dementias triggered by poor blood flow to the brain? Theoretical considerations. J Alzheimers Dis 2017;57:353-71.

53. Boyce VS, Mendell LM. Neurotrophins and spinal circuit function. Front Neural Circuits 2014;8:59-67.

54. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 2014;220:220-3.

55. West AF, Pruunslid P, Timmusk T. Neurotrophins: transcription and translation. Handb Exp Pharmacol 2014;220:67-100.

56. Hamasaki H, Honda H, Suzuki SO, Hokama M, Kiyohara Y, et al. Down-regulation of MET in hippocampal neurons of Alzheimer’s disease brains. Neuropathology 2014;34:284-90.

57. Sharma SK. Hepatocyte growth factor in synaptic plasticity and Alzheimer’s disease. Sci World J 2010;10:457-61.

58. Gibon J, Barker PA. Neurotrophins and proneuotrophins: Focus on synaptic activity and plasticity in the brain. Neuroscientist 2017;23:587-604.

59. Chen G, Shu H, Chen G, Ward BD, Antuono PG, et al. Staging Alzheimer’s disease risk by sequencing brain function and structure, cerebrospinal fluid, and cognition biomarkers. J Alzheimers Dis 2016;54:983-93.

60. Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Aging Res Rev 2018;48:109-21.

61. Jang SW, Liu X, Yepes M, Shephard KR, Miller GW, et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA 2010;107:2687-92.

62. O’Leary PD, Hughes RA. Design of potent peptide mimetics of brain-derived neurotrophic factor. J Biol Chem 2003;278:25738-44.

63. Jang SW, Liu X, Chan CB, Weinshenker D, Hall RA, et al. Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterodimerization and has potent neurotrophic activity. Chem Biol 2009;16:644-65.

64. Sardinia MF, Hanesworth JM, Krebs LT, Harding JW. AT4 receptor binding characteristics: D-amino acid- and glycine-substituted peptides. Peptides 1993;14:949-54.

65. Sardinia MF, Hanesworth JM, Krishnan F, Harding JW. AT4 receptor structure-binding relationship: N-terminal-modified angiotensin IV analogues. Peptides 1994;15:1399-406.

66. Kawas LH, McCoy AT, Yamamoto BJ, Wright JW, Harding JW. Development of angiotensin IV analogs as hepatocyte growth factor/Met modifiers. J Pharmacol Exp Ther 2012;340:539-48.

67. Kramár EA, Armtrong DL, Ikeda S, Wayner MJ, Harding JW, et al. The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 2001;897:114-21.

68. Krebs LT, Kramar EA, Hanesworth JM, Sardinia MF, Ball AE, et al. Characterization of the binding properties and physiological action of divalinal-angiotensin IV, a putative AT4 receptor antagonist. Regul Pept 1996;67:123-30.

69. Yamamoto BJ, Elias PD, Masino JA, Hudson BD, McCoy AT, et al. The angiotensin IV analog Nle-Tyr-Leu-ψ-(CH2-NH2)3-4-His-Pro-Phe (Norleual) can act as a hepatocyte growth factor/c-Met inhibitor. J Pharmacol Exp Ther 2010;33:161-73.

70. Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, et al. Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs. J Pharmacol Exp Ther 2011;339:35-44.

71. Wright JW, Harding JW. The brain angiotensin IV/AT4 receptor system as a new target for the treatment of Alzheimer’s disease. Drug Dev Res 2009;70:472-80.

72. Wright JW, Harding JW. The brain hepatocyte growth factor/c-Met receptor system: a new target for the treatment of Alzheimer’s disease. J Alzheimers Dis 2015;45:985-1000.

73. McCoy AT, Benoist CC, Wright JW, Kawas LH, Bule-Ghogare JM, et al. Evaluation of metabolically stabilized angiotensin IV analogs as procognitive/antidementia agents. J Pharmacol Exp Ther 2013;344:141-54.

74. Benoist CC, Kawas LH, Zhu M, Tyson KA, Stillmaker L, et al. The pro-cognitive and synaptogenic effects of angiotensin IV-derived peptides are dependent on activation of the hepatocyte growth factor/c-Met system. J Pharmacol Exp Ther 2014;351:390-402.

75. Holmes O, Pillozzi S, Deakin JA, Carafoli F, Kemp L, et al. Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains. J Mol Biol 2007;367:395-408.

76. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Jpn Acad Ser B Phys Biol Sci 2010;86:588-610.

77. Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog Neurobiol 2015;125:26-46.

78. Choi W, Lee J, Lee J, Lee SH, Dim S. Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration. Front Physiol 2019;10:914.

79. Kato S, Funakoshi H, Nakamura T, Kato M, Nakano I, et al. Expression of hepatocyte growth factor and c-Met in the anterior horn cells of the spinal cord in the patients with amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS and familial ALS with superoxide dismutase 1 gene mutation. Acta Neurophathol 2003;106:112-20.

80. Muller AM, Jun E, Conlon H, Sadiq SA. Cerebrospinal hepatocyte growth factor levels correlate negatively with disease activity in multiple sclerosis. J Neuroimmunol 2012;251:80-6.

81. Salehi Z, Rajael F. Expression of hepatocyte growth factor in the serum and cerebrospinal fluid of patients with Parkinson’s disease. J Clin Neurosci 2010;17:1553-6.

82. Shimamura M, Sata N, Sataq M, Wakayama K, Ogihara T, et al. Expression of hepatocyte growth factor and c-Met after spinal cord injury in rats. Brain Res 2007;1151:188-94.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/