REFERENCES
1. Quek AM, Britton JW, McKeon A, So E, Lennon VA, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol 2012;69:582-93.
2. Quek AML, O’Toole O. Autoimmune epilepsy: the evolving science of neural autoimmunity and its impact on epilepsy management. Semin Neurol 2018;38:290-302.
3. Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391-404.
4. Pitkänen A, Ekolle Ndode-Ekane X, Lapinlampi N, Puhakka N. Epilepsy biomarkers - Toward etiology and pathology specificity. Neurobiol Dis ;123:42-58.
5. Bermeo-Ovalle A. Scratching the surface in autoimmune epilepsy: it is the time to dig deeper, but how? Epilepsy Curr 2017;17:225-6.
6. Dubey D, Alqallaf A, Hays R, Freeman M, Chen K, et al. Neurological autoantibody prevalence in epilepsy of unknown etiology. JAMA Neurol 2017;74:397-402.
7. Ong MS, Kohane IS, Cai T, Gorman MP, Mandl KD. Population-level evidence for an autoimmune etiology of epilepsy. JAMA Neurol 2014;71:569-74.
8. Lv RJ, Ren HT, Guan HZ, Cui T, Shao XQ. Seizure semiology: an important clinical clue to the diagnosis of autoimmune epilepsy. Ann Clin Transl Neurol 2018;5:208-15.
9. Greco A, Rizzo MI, Virgilio AD, Conte M, Gallo A, et al. Autoimmune epilepsy. Autoimmun Rev 2016;15:221-5.
10. Higdon LM. Autoimmune epilepsy: more than just a paraneoplastic syndrome. 2018. Available from: https://www.semanticscholar.org/paper/Autoimmune-Epilepsy-%3A-More-Than-Just-A-Syndrome-Higdon/be670cccf8fdfe6e619a5e87464001dd131358b1 [Last accessed on 7 Jul 2020].
11. Lai M, Hughes EG, Peng X, Zhou L, Gleichman AJ, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009;65:424-34.
12. Höftberger R, van Sonderen A, Leypoldt F, Houghton D, Geschwind M, et al. Encephalitis and AMPA receptor antibodies: novel findings in a case series of 22 patients. Neurology 2015;84:2403-12.
13. Peng X, Hughes EG, Moscato EH, Parsons TD, Dalmau J, et al. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol 2015;77:381-98.
14. Gleichman AJ, Panzer JA, Baumann BH, Dalmau J, Lynch DR. Antigenic and mechanistic characterization of anti-AMPA receptor encephalitis. Ann Clin Transl Neurol 2014;1:180-9.
15. Joubert B, Kerschen P, Zekeridou A, Desestret V, Rogemond V, et al. Clinical spectrum of encephalitis associated with antibodies against the α-Amino-3-Hydroxy-5-Methyl-4-isoxazolepropionic acid receptor: case series and review of the literature. JAMA Neurol 2015;72:1163-9.
16. Saiz A, Blanco Y, Sabater L, González F, Bataller L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain 2008;131:2553-63.
17. Malter MP, Frisch C, Schoene-Bake JC, Helmstaedter C, Wandinger KP, et al. Outcome of limbic encephalitis with VGKC-complex antibodies: relation to antigenic specificity. J Neurol 2014;261:1695-705.
18. Barajas RF, Collins DE, Cha S, Geschwind MD. Adult-onset drug-refractory seizure disorder associated with anti-voltage-gated potassium-channel antibody. Epilepsia 2010;51:473-7.
19. McKnight K, Jiang Y, Hart Y, Cavey A, Wroe S, et al. Serum antibodies in epilepsy and seizure-associated disorders. Neurology 2005;65:1730-6.
20. Hart IK, Waters C, Vincent A, Newland C, Beeson D, et al. Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann Neurol 1997;41:238-46.
21. Barber PA, Anderson NE, Vincent A. Morvan’s syndrome associated with voltage-gated K+ channel antibodies. Neurology 2000;54:771-2.
22. Josephs KA, Silber MH, Fealey RD, Nippoldt TB, Auger RG, et al. Neurophysiologic studies in Morvan syndrome. J Clin Neurophysiol 2004;21:440-5.
23. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain 2010;133:2734-48.
24. Buckley C, Oger J, Clover L, Tüzün E, Carpenter K, et al. Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol 2001;50:73-8.
25. Graus F, Saiz A, Lai M, Bruna J, López F, et al. Neuronal surface antigen antibodies in limbic encephalitis: clinical-immunologic associations. Neurology 2008;71:930-6.
26. Kotsenas AL, Watson RE, Pittock SJ, Britton JW, Hoye SL, et al. MRI findings in autoimmune voltage-gated potassium channel complex encephalitis with seizures: one potential etiology for mesial temporal sclerosis. AJNR Am J Neuroradiol 2014;35:84-9.
27. Urbach H, Soeder BM, Jeub M, Klockgether T, Meyer B, et al. Serial MRI of limbic encephalitis. Neuroradiology 2006;48:380-6.
28. Lai M, Huijbers MG, Lancaster E, Graus F, Bataller L, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol 2010;9:776-85.
29. Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N, et al. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A 2010;107:3799-804.
30. Chernova OB, Somerville RP, Cowell JK. A novel gene, LGI1, from 10q24 is rearranged and downregulated in malignant brain tumors. Oncogene 1998;17:2873-81.
31. Kunapuli P, Chitta KS, Cowell JK. Suppression of the cell proliferation and invasion phenotypes in glioma cells by the LGI1 gene. Oncogene 2003;22:3985-91.
32. Kunapuli P, Kasyapa CS, Hawthorn L, Cowell JK. LGI1, a putative tumor metastasis suppressor gene, controls in vitro invasiveness and expression of matrix metalloproteinases in glioma cells through the ERK1/2 pathway. J Biol Chem 2004;279:23151-7.
33. Gu W, Brodtkorb E, Steinlein OK. LGI1 is mutated in familial temporal lobe epilepsy characterized by aphasic seizures. Ann Neurol 2002;52:364-7.
34. Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 2002;30:335-41.
35. Morante-Redolat JM, Gorostidi-Pagola A, Piquer-Sirerol S, Sáenz A, Poza JJ, et al. Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. Hum Mol Genet 2002;11:1119-28.
36. Poza JJ, Saenz A, Martinez-Gil A, Cheron N, Cobo AM, et al. Autosomal dominant lateral temporal epilepsy: clinical and genetic study of a large basque pedigree linked to chromosome 10q. Ann Neurol 1999;45:182-8.
37. Scheel H, Tomiuk S, Hofmann K. A common protein interaction domain links two recently identified epilepsy genes. Hum Mol Genet 2002;11:1757-62.
38. Buchanan SG, Gay NJ. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol 1996;65:1-44.
39. van Sonderen A, Thijs RD, Coenders EC, Jiskoot LC, Sanchez E, et al. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 2016;87:1449-56.
40. Irani SR, Michell AW, Lang B, Pettingill P, Waters P, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011;69:892-900.
41. Irani SR, Stagg CJ, Schott JM, Rosenthal CR, Schneider SA, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain 2013;136:3151-62.
42. Aurangzeb S, Symmonds M, Knight RK, Kennett R, Wehner T, et al. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures. Seizure 2017;50:14-7.
43. Navarro V, Kas A, Apartis E, Chami L, Rogemond V, et al; collaborators. Motor cortex and hippocampus are the two main cortical targets in LGI1-antibody encephalitis. Brain 2016;139:1079-93.
44. Poliak S, Gollan L, Martinez R, Custer A, Einheber S, et al. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 1999;24:1037-47.
45. Lancaster E, Huijbers MG, Bar V, Boronat A, Wong A, et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol 2011;69:303-11.
46. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 2006;354:1370-7.
47. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 2008;82:150-9.
48. Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, et al. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 2008;13:261-6.
49. Zweier C, de Jong EK, Zweier M, Orrico A, Ousager LB, et al. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet 2009;85:655-66.
50. Pinatel D, Hivert B, Boucraut J, Saint-Martin M, Rogemond V, et al. Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis. Front Cell Neurosci 2015;9:265.
51. van Sonderen A, Ariño H, Petit-Pedrol M, Leypoldt F, Körtvélyessy P, et al. The clinical spectrum of Caspr2 antibody-associated disease. Neurology 2016;87:521-8.
52. Joubert B, Saint-Martin M, Noraz N, Picard G, Rogemond V, et al. Characterization of a subtype of autoimmune encephalitis with anti-contactin-associated protein-like 2 antibodies in the cerebrospinal fluid, prominent limbic symptoms, and seizures. JAMA Neurol 2016;73:1115-24.
53. Sunwoo JS, Lee ST, Byun JI, Moon J, Shin JW, et al. Clinical manifestations of patients with CASPR2 antibodies. J Neuroimmunol 2015;281:17-22.
54. Ekizoglu E, Tuzun E, Woodhall M, Lang B, Jacobson L, et al. Investigation of neuronal autoantibodies in two different focal epilepsy syndromes. Epilepsia 2014;55:414-22.
55. Baysal-Kirac L, Tuzun E, Erdag E, Ulusoy C, Vanli-Yavuz EN, et al. Neuronal autoantibodies in epilepsy patients with peri-ictal autonomic findings. J Neurol 2016;263:455-66.
56. Shin YW, Lee ST, Shin JW, Moon J, Lim JA, et al. VGKC-complex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J Neuroimmunol 2013;265:75-81.
57. Boronat A, Gelfand JM, Gresa-Arribas N, Jeong HY, Walsh M, et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann Neurol 2013;73:120-8.
58. Clark BD, Kwon E, Maffie J, Jeong HY, Nadal M, et al. DPP6 localization in brain supports function as a Kv4 channel associated protein. Front Mol Neurosci 2008;1:8.
59. Piepgras J, Höltje M, Michel K, Li Q, Otto C, et al. Anti-DPPX encephalitis: pathogenic effects of antibodies on gut and brain neurons. Neurology 2015;85:890-7.
60. Tobin WO, Lennon VA, Komorowski L, Probst C, Clardy SL, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology 2014;83:1797-803.
61. Stokin GB, Popović M, Gelpi E, Kogoj A, Dalmau J, et al. Neuropathologic features of anti-dipeptidyl-peptidase-like protein-6 antibody encephalitis. Neurology 2015;84:430-2.
62. Balint B, Jarius S, Nagel S, Haberkorn U, Probst C, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 2014;82:1521-8.
63. Hara M, Ariño H, Petit-Pedrol M, Sabater L, Titulaer MJ, et al. DPPX antibody-associated encephalitis: main syndrome and antibody effects. Neurology 2017;88:1340-8.
64. Stoeck K, Carstens PO, Jarius S, Raddatz D, Stöcker W, et al. Prednisolone and azathioprine are effective in DPPX antibody-positive autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2015;2:e86.
65. Petit-Pedrol M, Armangue T, Peng X, Bataller L, Cellucci T, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterization of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014;13:276-86.
66. Ohkawa T, Satake S, Yokoi N, Miyazaki Y, Ohshita T, et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J Neurosci 2014;34:8151-63.
67. Spatola M, Petit-Pedrol M, Simabukuro MM, Armangue T, Castro FJ, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017;88:1012-20.
68. Benarroch EE. GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology 2007;68:612-4.
69. Zhou C, Huang Z, Ding L, Deel ME, Arain FM, et al. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem 2013;288:21458-72.
70. Tanaka M, Olsen RW, Medina MT, Schwartz E, Alonso ME, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 2008;82:1249-61.
71. Lancaster E, Lai M, Peng X, Hughes E, Constantinescu R, et al. Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol 2010;9:67-76.
72. Höftberger R, Titulaer MJ, Sabater L, Dome B, Rózsás A, et al. Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients. Neurology 2013;81:1500-6.
73. Boronat A, Sabater L, Saiz A, Dalmau J, Graus F. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology 2011;76:795-800.
74. Jeffery OJ, Lennon VA, Pittock SJ, Gregory JK, Britton JW, et al. GABAB receptor autoantibody frequency in service serologic evaluation. Neurology 2013;81:882-7.
75. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004;84:835-67.
76. Luján R, Shigemoto R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur J Neurosci 2006;23:1479-90.
77. Fang B, McKeon A, Hinson SR, Kryzer TJ, Pittock SJ, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol 2016;73:1297-307.
78. Iorio R, Damato V, Evoli A, Gessi M, Gaudino S, et al. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry 2018;89:138-46.
79. Flanagan EP, Hinson SR, Lennon VA, Fang B, Aksamit AJ, et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: analysis of 102 patients. Ann Neurol 2017;81:298-309.
80. Hutchinson M, Waters P, McHugh J, Gorman G, O’Riordan S, et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008;71:1291-2.
81. Swayne A, Tjoa L, Broadley S, Dionisio S, Gillis D, et al. Antiglycine receptor antibody related disease: a case series and literature review. Eur J Neurol 2018;25:1290-8.
82. Carvajal-González A, Leite MI, Waters P, Woodhall M, Coutinho E, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014;137:2178-92.
83. Zuliani L, Ferlazzo E, Andrigo C, Casano A, Cianci V, et al. Glycine receptor antibodies in 2 cases of new, adult-onset epilepsy. Neurol Neuroimmunol Neuroinflamm 2014;1:e16.
84. Lancaster E, Martinez-Hernandez E, Titulaer MJ, Boulos M, Weaver S, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology 2011;77:1698-701.
85. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2011;60:1017-41.
86. Simonyi A, Schachtman TR, Christoffersen GR. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory. Eur J Pharmacol 2010;639:17-25.
87. Spatola M, Sabater L, Planagumà J, Martínez-Hernandez E, Armangué T, et al. Encephalitis with mGluR5 antibodies: Symptoms and antibody effects. Neurology 2018;90:e1964-72.
89. Vitaliani R, Mason W, Ances B, Zwerdling T, Jiang Z, et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol 2005;58:594-604.
90. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008;7:1091-8.
91. Dalmau J, Lancaster E, Martinez-hernandez E, Rosenfeld MR, Balice-gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011;10:63-74.
92. Titulaer MJ, Mccracken L, Gabilondo I, Armangué T, Glaser C, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013;12:157-65.
93. Schmitt SE, Pargeon K, Frechette ES, Hirsch LJ, Dalmau J, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 2012;79:1094-100.
94. Prüss H, Dalmau J, Harms L, Holtje M, Ahnert-Hilger G, et al. Retrospective analysis of NMDA receptor antibodies in encephalitis of unknown origin. Neurology 2010;75:1735-9.
95. Zalewski NL, Lennon VA, Lachance DH, Klein CJ, Pittock SJ, et al. P/Q- and N-type calcium-channel antibodies: oncological, neurological, and serological accompaniments. Muscle Nerve 2016;54:220-7.
96. Lennon VA, Kryzer TJ, Griesmann GE, O’Suilleabhain PE, Windebank AJ, et al. Calcium-channel antibodies in the lambert-eaton syndrome and other paraneoplastic syndromes. N Engl J Med 1995;332:1467-74.
97. Finkel L, Koh S. N-type calcium channel antibody-mediated autoimmune encephalitis: An unlikely cause of a common presentation. Epilepsy Behav Case Rep 2013;1:92-6.
98. Younes K, Lepow LA, Estrada C, Schulz PE. Auto-antibodies against P/Q- and N-type voltage-dependent calcium channels mimicking frontotemporal dementia. SAGE Open Med Case Rep 2018;6:2050313X17750928.
99. Lichte B, Veh R, Meyer H, Kilimann M. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J 1992;11:2521-30.
100. Butler MH, David C, Ochoa GC, Freyberg Z, Daniell L, et al. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 1997;137:1355-67.
101. Saiz A, Dalmau J, Butler MH, Chen Q, Delattre JY, et al. Anti-neuronal antibodies in paraneoplastic neurological disorders with small-cell lung carcinoma. J Neurol Neurosurg Psychiatry 1999;66:214-7.
102. McKeon A, Pittock SJ, Lennon VA. Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology 2009;73:2132. author reply 2133
103. Faissner S, Lukas C, Reinacher-Schick A, Tannapfel A, Gold R, et al. Amphiphysin-positive paraneoplastic myelitis and stiff-person syndrome. Neurol Neuroimmunol Neuroinflamm 2016;3:e285.
104. Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology 1998;50:652-7.
105. Graus F, Keime-Guibert F, Reñe R, Benyahia B, Ribalta T, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 2001;124:1138-48.
106. Shavit YB, Graus F, Probst A, Rene R, Steck AJ. Epilepsia partialis continua: a new manifestation of anti-Hu-associated paraneoplastic encephalomyelitis. Ann Neurol 1999;45:255-8.
107. Rudzinski LA, Pittock SJ, McKeon A, Lennon VA, Britton JW. Extratemporal EEG and MRI findings in ANNA-1 (anti-Hu) encephalitis. Epilepsy Res 2011;95:255-62.
108. Yu Z, Kryzer TJ, Griesmann GE, Kim K, Benarroch EE, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol 2001;49:146-54.
109. Aydin D, Somnier F, Lassen LH. Paraneoplastic choreoathetosis in a patient with small cell lung carcinoma and anti-CRMP5/CV2: a case report. Case Rep Neurol 2016;8:16-9.
110. Vernino S, Tuite P, Adler CH, Meschia JF, Boeve BF, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol 2002;51:625-30.
111. Maramattom BV. Paraneoplastic CRMP-5 basal ganglionitis and limbic encephalitis in an elderly Indian lady. Neurol India 2013;61:534-5.
112. Igarashi N, Sawamura H, Kaburaki T, Aihara M. Anti-collapsing response-mediating protein-5 antibody-positive paraneoplastic perioptic neuritis without typical neurological symptoms. Neuroophthalmology 2017;41:24-9.
113. Brot S, Malleval C, Benetollo C, Auger C, Meyronet D, et al. Identification of a new CRMP5 isoform present in the nucleus of cancer cells and enhancing their proliferation. Exp Cell Res 2013;319:588-99.
114. Solimena M, Folli F, Aparisi R, Pozza G, De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med 1990;322:1555-60.
115. Pittock SJ, Yoshikawa H, Ahlskog JE, Tisch SH, Benarroch EE, et al. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin Proc 2006;81:1207-14.
116. Ariño H, Höftberger R, Gresa-Arribas N, Martínez-Hernández E, Armangue T, et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol 2015;72:874-81.
117. Errichiello L, Perruolo G, Pascarella A, Formisano P, Minetti C, et al. Autoantibodies to glutamic acid decarboxylase (GAD) in focal and generalized epilepsy: A study on 233 patients. J Neuroimmunol 2009;211:120-3.
118. Falip M, Carreño M, Miró J, Saiz A, Villanueva V, et al. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur J Neurol 2012;19:827-33.
119. Brenner T, Sills GJ, Hart Y, Howell S, Waters P, et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 2013;54:1028-35.
120. Liimatainen S, Honnorat J, Pittock SJ, McKeon A, Manto M, et al; T1D Exchange Biobank. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J Rare Dis 2018;13:55.
121. Fredriksen JR, Carr CM, Koeller KK, Verdoorn JT, Gadoth A, et al. MRI findings in glutamic acid decarboxylase associated autoimmune epilepsy. Neuroradiology 2018;60:239-45.
122. Kanter IC, Huttner HB, Staykov D, Biermann T, Struffert T, et al. Cyclophosphamide for anti-GAD antibody-positive refractory status epilepticus. Epilepsia 2008;49:914-20.
123. Heiry M, Afra P, Matsuo F, Greenlee JE, Clardy SL. Improvement of GAD65-associated autoimmune epilepsy with testosterone replacement therapy. Neurol Neuroimmunol Neuroinflamm 2015;2:e142.
124. Malter MP, Frisch C, Zeitler H, Surges R, Urbach H, et al. Treatment of immune-mediated temporal lobe epilepsy with GAD antibodies. Seizure 2015;30:57-63.
125. Dalmau J, Graus F, Villarejo A, Posner JB, Blumenthal D, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004;127:1831-44.
126. Hoffmann LA, Jarius S, Pellkofer HL, Schueller M, Krumbholz M, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: 22 newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry 2008;79:767-73.
127. Ney DE, Messersmith W, Behbakht K. Anti-ma2 paraneoplastic encephalitis in association with recurrent cervical cancer. J Clin Neurol 2014;10:262-6.
128. Sahashi K, Sakai K, Mano K, Hirose G. Anti-Ma2 antibody related paraneoplastic limbic/brain stem encephalitis associated with breast cancer expressing Ma1, Ma2, and Ma3 mRNAs. J Neurol Neurosurg Psychiatry 2003;74:1332-5.