REFERENCES

1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006;5:525-35.

2. Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 2016;46:292-300.

3. Jankovic J. Parkinson’s disease: clinical features and diagnosis,. J Neurol Neurosurg Psychiatry 2008;79:368-76.

4. Todorova A, Jenner P, Ray Chaudhuri K. Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Pract Neurol 2014;14:310-22.

5. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015;30:1591-601.

6. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA 2014;311:1670-83.

7. Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 2010;67:715-25.

8. Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2015;30:1600-11.

9. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, et al. Alpha-synuclein in Lewy bodies. Nature 1997;388:839-40.

10. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 1998;95:6469-73.

11. Klemann CJHM, Martens GJM, Sharma M, Martens MB, Isacson O, et al. Integrated molecular landscape of Parkinson’s disease. NPJ Parkinsons Dis 2017;3:14.

12. Xicoy H, Peñuelas N, Vila M, Laguna A. Autophagic- and Lysosomal-Related Biomarkers for Parkinson’s Disease: Lights and Shadows. Cells 2019;8:1317.

13. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004;305:1292-5.

14. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008;283:23542-56.

15. Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA. Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 2010;285:13621-9.

16. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966;28:435-92.

17. Xilouri M, Stefanis L. Autophagic pathways in Parkinson disease and related disorders. Expert Rev Mol Med 2011;13:e8.

18. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, et al. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron 2017;93:1015-34.

19. Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy 2015;11:1956-77.

20. Müller O, Sattler T, Flötenmeyer M, Schwarz H, Plattner H, et al. Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol 2000;151:519-28.

21. Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009;132:1783-94.

22. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009;361:1651-61.

23. Nalls MA, Duran R, Lopez G, Kurzawa-Akanbi M, McKeith IG, et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol 2013;70:727-35.

24. Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev 2018;42:72-85.

25. Robak LA, Jansen IE, van Rooij J, Uitterlinden AG, Kraaij R, et al; International Parkinson’s Disease Genomics Consortium (IPDGC). Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 2017;140:3191-203.

26. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013;19:983-97.

27. Martinez-vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 2007;6:352-61.

28. Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012;69:1125-36.

29. Yang YP, Liang ZQ, Gu ZL, Qin ZH. Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 2005;26:1421-34.

30. Köchl R, Hu XW, Chan EY, Tooze SA. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 2006;7:129-45.

31. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990;15:305-9.

32. Dice JF, Terlecky SR, Chiang HL, Olson TS, Isenman LD, et al. A selective pathway for degradation of cytosolic proteins by lysosomes. Semin Cell Biol 1990;1:449-55.

33. Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, et al. Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain 2013;136:2130-46.

34. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 2014;24:92-104.

35. Xilouri M, Brekk OR, Stefanis L. Autophagy and alpha-synuclein: relevance to Parkinson’s disease and related synucleopathies. Mov Disord 2016;31:178-92.

36. Moors T, Paciotti S, Chiasserini D, Calabresi P, Parnetti L, et al. Lysosomal dysfunction and α-synuclein aggregation in Parkinson’s disease: diagnostic links. Mov Disord 2016;31:791-801.

37. Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989;246:382-5.

38. Bandyopadhyay U, Cuervo AM. Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy 2008;4:1101-3.

39. Hatem CL, Gough NR, Fambrough DM. Multiple mRNAs encode the avian lysosomal membrane protein LAMP-2, resulting in alternative transmembrane and cytoplasmic domains. J Cell Sci 1995;108:2093-100.

40. Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 2000;113:4441-50.

41. Sala G, Stefanoni G, Arosio A, Riva C, Melchionda L, et al. Reduced expression of the chaperone-mediated autophagy carrier hsc70 protein in lymphomonocytes of patients with Parkinson’s disease. Brain Res 2014;1546:46-52.

42. Papagiannakis N, Xilouri M, Koros C, Stamelou M, Antonelou R, et al. Lysosomal alterations in peripheral blood mononuclear cells of Parkinson’s disease patients. Mov Disord 2015;30:1830-4.

43. Wu G, Wang X, Feng X, Zhang A, Li J, et al. Altered expression of autophagic genes in the peripheral leukocytes of patients with sporadic Parkinson’s disease. Brain Res 2011;1394:105-11.

44. Bjørkøy G, Lamark T, Pankiv S, Øvervatn A, Brech A, et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009;452:181-97.

45. Ambrosi G, Ghezzi C, Sepe S, Milanese C, Payan-Gomez C, et al. Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson’s disease. Biochim Biophys Acta 2014;1842:1385-94.

46. Teves JMY, Bhargava V, Kirwan KR, Corenblum MJ, Justiniano R, et al. Parkinson’s disease skin fibroblasts display signature alterations in growth, redox homeostasis, mitochondrial function, and autophagy. Front Neurosci 2017;11:737.

47. González-Casacuberta I, Juárez-Flores DL, Ezquerra M, Fucho R, Catalán-García M, et al. Mitochondrial and autophagic alterations in skin fibroblasts from Parkinson disease patients with Parkin mutations. Aging (Albany NY) 2019;11:3750-67.

48. McNeill A, Magalhaes J, Shen C, Chau KY, Hughes D, et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 2014;137:1481-95.

49. Boman A, Svensson S, Boxer A, Rojas JC, Seeley WW, et al. Distinct lysosomal network protein profiles in parkinsonian syndrome cerebrospinal fluid. J Parkinsons Dis 2016;6:307-15.

50. Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, et al. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 2015;88:199-204.

51. Cortes CJ, La Spada AR. TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: molecular mechanisms, cellular processes, and emerging therapeutic opportunities. Neurobiol Dis 2019;122:83-93.

52. Miki Y, Shimoyama S, Kon T, Ueno T, Hayakari R, et al. Alteration of autophagy-related proteins in peripheral blood mononuclear cells of patients with Parkinson’s disease. Neurobiol Aging 2018;63:33-43.

53. Prigione A, Piazza F, Brighina L, Begni B, Galbussera A, et al. Alpha-synuclein nitration and autophagy response are induced in peripheral blood cells from patients with Parkinson disease. Neurosci Lett 2010;477:6-10.

54. Collins LM, Drouin-Ouellet J, Kuan WL, Cox T, Barker RA. Dermal fibroblasts from patients with Parkinson’s disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. Version 2. F1000Res 2017;6:1751.

55. Ketudat Cairns JR, Esen A. β-Glucosidases. Cell Mol Life Sci 2010;67:3389-405.

56. Lieberman RL. A Guided Tour of the Structural Biology of Gaucher Disease: Acid-β-Glucosidase and Saposin C. Enzyme Res 2011;2011:973231.

57. Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int J Mol Sci 2017;18:441.

58. Li Y, Sekine T, Funayama M, Li L, Yoshino H, et al. Clinicogenetic study of GBA mutations in patients with familial Parkinson’s disease. Neurobiol Aging 2014;35:935.e3-8.

59. Anheim M, Elbaz A, Lesage S, Durr A, Condroyer C, et al; French Parkinson Disease Genetic Group. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology 2012;78:417-20.

60. Rana HQ, Balwani M, Bier L, Alcalay RN. Age-specific Parkinson disease risk in GBA mutation carriers: information for genetic counseling. Genet Med 2013;15:146-9.

61. Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain 2013;136:392-9.

62. Liu G, Boot B, Locascio JJ, Jansen IE, Winder-Rhodes S, et al; International Genetics of Parkinson Disease Progression (IGPP) Consortium. Specifically neuropathic Gaucher’s mutations accelerate cognitive decline in Parkinson’s. Ann Neurol 2016;80:674-85.

63. Simitsi A, Koros C, Moraitou M, Papagiannakis N, Antonellou R, et al. Phenotypic characteristics in GBA-associated Parkinson’s disease: a study in a greek population. J Parkinsons Dis 2018;8:101-5.

64. Atashrazm F, Hammond D, Perera G, Dobson-Stone C, Mueller N, et al. Reduced glucocerebrosidase activity in monocytes from patients with Parkinson’s disease. Sci Rep 2018;8:15446.

65. Ichinose Y, Ishiura H, Tanaka M, Yoshimura J, Doi K, et al. Neuroimaging, genetic, and enzymatic study in a Japanese family with a GBA gross deletion. Parkinsonism Relat Disord 2019;61:57-63.

66. Balducci C, Pierguidi L, Persichetti E, Parnetti L, Sbaragli M, et al. Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson’s disease. Mov Disord 2007;22:1481-4.

67. Parnetti L, Chiasserini D, Persichetti E, Eusebi P, Varghese S, et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov Disord 2014;29:1019-27.

68. Parnetti L, Paciotti S, Eusebi P, Dardis A, Zampieri S, et al. Cerebrospinal fluid β-glucocerebrosidase activity is reduced in parkinson’s disease patients. Mov Disord 2017;32:1423-31.

69. van Dijk KD, Persichetti E, Chiasserini D, Eusebi P, Beccari T, et al. Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson’s disease. Mov Disord 2013;28:747-54.

70. Alcalay RN, Levy OA, Waters CC, Fahn S, Ford B, et al. Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations. Brain 2015;138:2648-58.

71. Pchelina S, Emelyanov A, Baydakova G, Andoskin P, Senkevich K, et al. Oligomeric α-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease. Neurosci Lett 2017;636:70-6.

72. Cerri S, Ghezzi C, Sampieri M, Siani F, Avenali M, et al. The exosomal/total α-synuclein ratio in plasma is associated with glucocerebrosidase activity and correlates with measures of disease severity in PD patients. Front Cell Neurosci 2018;12:125.

73. Ortega RA, Torres PA, Swan M, Nichols W, Boschung S, et al. Glucocerebrosidase enzyme activity in GBA mutation Parkinson’s disease. J Clin Neurosci 2016;28:185-6.

74. Kim HJ, Jeon B, Song J, Lee WW, Park H, et al. Leukocyte glucocerebrosidase and β-hexosaminidase activity in sporadic and genetic Parkinson disease. Parkinsonism Relat Disord 2016;23:99-101.

75. Silveira CRA, MacKinley J, Coleman K, Li Z, Finger E, et al. Ambroxol as a novel disease-modifying treatment for Parkinson’s disease dementia: protocol for a single-centre, randomized, double-blind, placebo-controlled trial. BMC Neurol 2019;19:20.

76. Mullin S, Smith L, Lee K, D’Souza G, Woodgate P, et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. JAMA Neurol 2020:427.

77. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011;146:37-52.

78. Pchelina SN, Nuzhnyi EP, Emelyanov AK, Boukina TM, Usenko TS, et al. Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases. Neurosci Lett 2014;583:188-93.

79. Papagiannakis N, Koros C, Stamelou M, Simitsi AM, Maniati M, et al. Alpha-synuclein dimerization in erythrocytes of patients with genetic and non-genetic forms of Parkinson’s Disease. Neurosci Lett 2018;672:145-9.

80. Argyriou A, Dermentzaki G, Papasilekas T, Moraitou M, Stamboulis E, et al. Increased dimerization of alpha-synuclein in erythrocytes in Gaucher disease and aging. Neurosci Lett 2012;528:205-9.

81. Moraitou M, Dermentzaki G, Dimitriou E, Monopolis I, Dekker N, et al. α-Synuclein dimerization in erythrocytes of Gaucher disease patients: correlation with lipid abnormalities and oxidative stress. Neurosci Lett 2016;613:1-5.

82. Lerche S, Wurster I, Roeben B, Zimmermann M, Riebenbauer B, et al. Parkinson’s disease: glucocerebrosidase 1 mutation severity is associated with CSF alpha-synuclein profiles. Mov Disord 2020;35:495-9.

83. Lerche S, Machetanz G, Wurster I, Roeben B, Zimmermann M, et al. Dementia with lewy bodies: GBA1 mutations are associated with cerebrospinal fluid alpha-synuclein profile. Mov Disord 2019;34:1069-73.

84. Chan B, Adam DN. A review of fabry disease,. Skin Therapy Lett 2018;23:4-6.

85. Wu G, Yan B, Wang X, Feng X, Zhang A, et al. Decreased activities of lysosomal acid alpha-D-galactosidase A in the leukocytes of sporadic Parkinson’s disease. J Neurol Sci 2008;271:168-73.

86. Alcalay RN, Wolf P, Levy OA, Kang UJ, Waters C, et al. Alpha galactosidase A activity in Parkinson’s disease. Neurobiol Dis 2018;112:85-90.

87. Niimi Y, Ito S, Mizutani Y, Murate K, Shima S, et al. Altered regulation of serum lysosomal acid hydrolase activities in Parkinson’s disease: A potential peripheral biomarker? Parkinsonism Relat Disord 2019;61:132-7.

88. Papagiannakis N, Xilouri M, Koros C, Simitsi AM, Stamelou M, et al. Autophagy dysfunction in peripheral blood mononuclear cells of Parkinson’s disease patients. Neurosci Lett 2019;704:112-5.

89. Guerra F, Girolimetti G, Beli R, Mitruccio M, Pacelli C, et al. Synergistic Effect of Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease. Cells 2019;8:452.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/