1. Ulep MG, Saraon SK, McLea S. Alzheimer disease. J Nurse Pract 2018;14:129-35.

2. Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, Pathology, genetics, and pathophysiology. Clin Geriatr Med 2020;36:1-12.

3. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019;14:32.

4. Kim WS, Kagedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 2014;6:73.

5. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015;16:358-72.

6. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med 2017;23:1018-27.

7. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 2015;4:19.

8. in t’ Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001;345:1515-21.

9. Wang J, Tan L, Wang HF, Tan CC, Meng XF, et al. Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis 2015;44:385-96.

10. Chew G, Petretto E. Transcriptional networks of microglia in Alzheimer’s disease and insights into pathogenesis. Genes (Basel) 2019;10.

11. Mathys H, Adaikkan C, Gao F, Young JZ, Manet E, et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 2017;21:366-80.

12. Patir A, Shih B, McColl BW, Freeman TC. A core transcriptional signature of human microglia: derivation and utility in describing region-dependent alterations associated with Alzheimer’s disease. Glia 2019;67:1240-53.

13. Rio-Hortega P. Del the Microglia. Lancet 1939;233:1023-6.

14. Tremblay ME, Lecours C, Samson L, Sanchez-Zafra V, Sierra A. From the cajal alumni achucarro and Rio-Hortega to the rediscovery of never-resting microglia. Front Neuroanat 2015;9:45.

15. McGeer PL, Itagaki S, McGeer EG. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 1988;76:550-7.

16. McGeer PL, Itagaki S, Tago H, McGeer EG. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987;79:195-200.

17. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988;38:1285-91.

18. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989;24:173-82.

19. Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 1988;9:339-49.

20. Mattiace LA, Davies P, Dickson DW. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am J Pathol 1990;136:1101-14.

21. Nakagawa T, Ohnishi K, Kosaki Y, Saito Y, Horlad H, et al. Optimum immunohistochemical procedures for analysis of macrophages in human and mouse formalin fixed paraffin-embedded tissue samples. J Clin Exp Hematop 2017;57:31-6.

22. Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, et al. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015;35:354-89.

23. Beach TG, Sue LI, Walker DG, Roher AE, Lue L, et al. The sun health research institute brain donation program: description and experience, 1987-2007. Cell Tissue Bank 2008;9:229-45.

24. Friedman BA, Srinivasan K, Ayalon G, Meilandt WJ, Lin H, et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 2018;22:83247.

25. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 2016;113:E1738-46.

26. Zhou Y, Song WM, Andhey PS, Swain A, Levy T, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med 2020;26:131-42.

27. van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM, et al. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun 2019;10:1139.

28. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, et al. Loss of “homeostatic” microglia and patterns of their activation in active multiple sclerosis. Brain 2017;140:1900-13.

29. Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 2019;101:207-23.e10.

30. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 2014;17:131-43.

31. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang L, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 2013;16:1896-905.

32. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 2017;169:1276-90.e17.

33. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 2018;173:1073-81.

34. Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M, et al. Microglial immunophenotype in dementia with Alzheimer’s pathology. J Neuroinflammation 2016;13:135.

35. Akiyama H, McGeer PL. Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 1990;30:81-93.

36. McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, et al. Microglia in degenerative neurological disease. Glia 1993;7:84-92.

37. Strittmatter WJ, Saunders AM, Goedert M, Weisgraber KH, Dong LM, et al. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci U S A 1994;91:11183-6.

38. Saunders AM, Schmader K, Breitner JC, Benson MD, Brown WT, et al. Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet (London, England) 1993;342:710-1.

39. Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, et al. Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 1994;94:860-9.

40. Yamaguchi H, Ishiguro K, Sugihara S, Nakazato Y, Kawarabayashi T, et al. Presence of apolipoprotein E on extracellular neurofibrillary tangles and on meningeal blood vessels precedes the Alzheimer beta-amyloid deposition. Acta Neuropathol 1994;88:413-9.

41. Diedrich JF, Minnigan H, Carp RI, Whitaker JN, Race R, et al. Neuropathological changes in scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J Virol 1991;65:4759-68.

42. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 1991;541:163-6.

43. Uchihara T, Duyckaerts C, He Y, Kobayashi K, Seilhean D, et al. ApoE immunoreactivity and microglial cells in Alzheimer’s disease brain. Neurosci Lett 1995;195:5-8.

44. McGeer PL, Akiyama H, Itagaki S, McGeer EG. Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 1989;107:341-6.

45. Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ. Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol 1996;138:22-32.

46. Walker DG, Kim SU, McGeer PL. Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J Neurosci Res 1995;40:478-93.

47. Haage V, Semtner M, Vidal RO, Hernandez DP, Pong WW, et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol Commun 2019;7:20.

48. Mukherjee S, Klaus C, Pricop-Jeckstadt M, Miller JA, Struebing FL. A microglial signature directing human aging and neurodegeneration-related gene networks. Front Neurosci 2019;13:2.

49. Olah M, Patrick E, Villani AC, Xu J, White CC, et al. A transcriptomic atlas of aged human microglia. Nat Commun 2018;9:539.

50. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016;89:37-53.

51. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 2017;20:1162-71.

52. Sheng JG, Mrak RE, Griffin WS. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol 1997;56:285-90.

53. Sheng JG, Griffin WS, Royston MC, Mrak RE. Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer’s disease. Neuropathol Appl Neurobiol 1998;24:278-83.

54. Li Y, Liu L, Barger SW, Griffin WST. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003;23:1605-11.

55. Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 1993;7:75-83.

56. Terai K, Walker DG, McGeer EG, McGeer PL. Neurons express proteins of the classical complement pathway in Alzheimer disease. Brain Res 1997;769:385-90.

57. Fonseca MI, Chu SH, Hernandez MX, Fang MJ, Modarresi L, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation 2017;14:48.

58. Benoit ME, Tenner AJ. Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J Neurosci 2011;31:3459-69.

59. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013;368:107-16.

60. Korvatska O, Leverenz JB, Jayadev S, McMillan P, Kurtz I, et al. R47H variant of TREM2 associated with alzheimer disease in a large late-onset family: clinical, genetic, and neuropathological study. JAMA Neurol 2015;72:920-7.

61. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 2002;71:656-62.

62. Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. TREM2 Binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 2016;91:328-40.

63. Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, et al. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J Biol Chem 2015;290:26043-50.

64. Kosack L, Gawish R, Lercher A, Vilagos B, Hladik A, et al. The lipid-sensor TREM2 aggravates disease in a model of LCMV-induced hepatitis. Sci Rep 2017;7:11289.

65. Bailey CC, DeVaux LB, Farzan M. The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J Biol Chem 2015;290:26033-42.

66. Zhao Y, Wu X, Li X, Jiang LL, Gui X, et al. TREM2 is a receptor for beta-amyloid that mediates microglial function. Neuron 2018;97:1023-31.e7.

67. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 2015;160:1061-71.

68. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 2017;47:566-81.e9.

69. Frank S, Burbach GJ, Bonin M, Walter M, Streit W, et al. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 2008;56:1438-47.

70. Satoh JI, Kawana N, Yamamoto Y, Ishida T, Saito Y, et al. A survey of TREM2 antibodies reveals neuronal but not microglial staining in formalin-fixed paraffin-embedded postmortem Alzheimer’s brain tissues. Alzheimers Res Ther 2013;5:30.

71. Fahrenhold M, Rakic S, Classey J, Brayne C, Ince PG, et al. TREM2 expression in the human brain: a marker of monocyte recruitment? Brain Pathol 2017; doi: 10.1111/bpa.12564.

72. Lue LF, Schmitz CT, Serrano G, Sue LI, Beach TG, et al. .

73. Perez SE, Nadeem M, He B, Miguel JC, Malek-Ahmadi MH, et al. Neocortical and hippocampal TREM2 protein levels during the progression of Alzheimer’s disease. Neurobiol Aging 2017;54:133-43.

74. Raha-Chowdhury R, Henderson JW, Raha AA, Stott SRW, Vuono R, et al. Erythromyeloid-derived TREM2: a major determinant of Alzheimer’s disease pathology in down syndrome. J Alzheimers Dis 2018;61:1143-62.

75. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011;43:436-41.

76. Walker DG, Whetzel AM, Serrano G, Sue LI, Beach TG, et al. Association of CD33 polymorphism rs3865444 with Alzheimer’s disease pathology and CD33 expression in human cerebral cortex. Neurobiol Aging 2015;36:571-82.

77. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013;78:631-43.

78. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 2013;16:848-50.

79. Gonzalez Y, Herrera MT, Soldevila G, Garcia-Garcia L, Fabian G, et al. High glucose concentrations induce TNF-alpha production through the down-regulation of CD33 in primary human monocytes. BMC Immunol 2012;13:19.

80. Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ, et al. TREM2 Acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron 2019;103:820-35.e7.

81. Pereson S, Wils H, Kleinberger G, McGowan E, Vandewoestyne M, et al. Progranulin expression correlates with dense-core amyloid plaque burden in Alzheimer disease mouse models. J Pathol 2009;219:173-81.

82. Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, et al. Progranulin protects against amyloid beta deposition and toxicity in Alzheimer’s disease mouse models. Nat Med 2014;20:1157-64.

83. Mendsaikhan A, Tooyama I, Bellier JP, Serrano GE, Sue LI, et al. Characterization of lysosomal proteins progranulin and prosaposin and their interactions in Alzheimer’s disease and aged brains: increased levels correlate with neuropathology. Acta Neuropathol Commun 2019;7:215.

84. Mendsaikhan A, Tooyama I, Walker DG. Microglial progranulin: involvement in Alzheimer’s disease and neurodegenerative diseases. Cells 2019;8.

85. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 2016;165:921-35.

86. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE. CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 2009;29:11982-92.

87. Chen K, Iribarren P, Hu J, Chen J, Gong W, et al. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 2006;281:3651-9.

88. Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, et al. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008;213:114-21.

89. Scholtzova H, Chianchiano P, Pan J, Sun Y, Goni F, et al. Amyloid beta and Tau Alzheimer’s disease related pathology is reduced by Toll-like receptor 9 stimulation. Acta Neuropathol Commun 2014;2:101.

90. Bsibsi M, Bajramovic JJ, Vogt MHJ, van Duijvenvoorden E, Baghat A, et al. The microtubule regulator stathmin is an endogenous protein agonist for TLR3. J Immunol 2010;184:6929-37.

91. Walker DG, Tang TM, Lue LF. Increased expression of toll-like receptor 3, an anti-viral signaling molecule, and related genes in Alzheimer’s disease brains. Exp Neurol 2018;309:91-106.

92. Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 2000;164:5998-6004.

93. Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, et al. Interleukin-34, a comprehensive review. J Leukoc Biol 2018;104:931-51.

94. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014;82:380-97.

95. Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MRP, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 2016;139:1265-81.

96. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun 2019;10:3758.

97. Nissen JC, Thompson KK, West BL, Tsirka SE. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp Neurol 2018;307:24-36.

98. Bennett RE, Bryant A, Hu M, Robbins AB, Hopp SC, et al. Partial reduction of microglia does not affect tau pathology in aged mice. J Neuroinflammation 2018;15:311.

99. Olmos-Alonso A, Schetters STT, Sri S, Askew K, Mancuso R, et al. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 2016;139:891-907.

100. Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, et al. Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res 1994;639:171-4.

101. Walker DG, Tang TM, Lue LF. Studies on colony stimulating factor receptor-1 and ligands colony stimulating factor-1 and Interleukin-34 in Alzheimer’s disease brains and human microglia. Front Aging Neurosci 2017;9:244.

102. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 2013;210:157-72.

103. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009;27:451-83.

104. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000;165:3541-4.

105. Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, et al. LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 2005;128:1778-89.

106. Melief J, Sneeboer MAM, Litjens M, Ormel PR, Palmen SJMC, et al. Characterizing primary human microglia: a comparative study with myeloid subsets and culture models. Glia 2016;64:1857-68.

107. Mizee MR, Miedema SSM, van der Poel M, Adelia Schuurman KG, van Strien ME, et al. Isolation of primary microglia from the human post-mortem brain: effects of ante- and post-mortem variables. Acta Neuropathol Commun 2017;5:16.

108. Beschorner R, Nguyen TD, Gozalan F, Pedal I, Mattern R, et al. CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol 2002;103:541-9.

109. Walker DG, Tang TM, Mendsaikhan A, Tooyama I, Serrano GE, et al. Patterns of expression of purinergic receptor P2RY12, a putative marker for non-activated microglia, in aged and Alzheimer’s disease brains. Int J Mol Sci 2020;21.

110. Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, et al. Inflammatory components in human Alzheimer’s disease and after active amyloid-beta42 immunization. Brain 2013;136:2677-96.

111. Gomez-Nicola D, Boche D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease. Alzheimers Res Ther 2015;7:42.

112. Hendrickx DAE, van Eden CG, Schuurman KG, Hamann J, Huitinga I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol 2017;309:12-22.

113. Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology 2016;36:39-49.

114. Gonzalez Ibanez F, Picard K, Bordelau M, Sharma K, Bisht K, et al. Immunofluorescence staining using IBA1 and TMEM119 for microglial density, morphology and peripheral myeloid cell infiltration analysis in mouse brain. J Vis Exp 2019; doi: 10.3791/60510.

115. van Wageningen TA, Vlaar E, Kooij G, Jongenelen CAM, Geurts JJG, et al. Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol Commun 2019;7:206.

116. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 2017;65:375-87.

117. Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 2009;215:5-19.

118. Koning N, van Eijk M, Pouwels W, Brouwer MSM, Voehringer D, et al. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J Innate Immun 2010;2:195-200.

119. Lyons A, Downer EJ, Crotty S, Nolan YM, Mills KHG, et al. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci 2007;27:8309-13.

120. Koning N, Swaab DF, Hoek RM, Huitinga I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol 2009;68:159-67.

121. Melief J, Koning N, Schuurman KG, Van De Garde MDB, Smolders J, et al. Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia 2012;60:1506-17.

122. Pey P, Pearce RKB, Kalaitzakis ME, Griffin WST, Gentleman SM. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol Commun 2014;2:21.

123. Roberts ES, Masliah E, Fox HS. CD163 identifies a unique population of ramified microglia in HIV encephalitis (HIVE). J Neuropathol Exp Neurol 2004;63:1255-64.

124. Darmanis S, Gallant CJ, Marinescu VD, Niklasson M, Segerman A, et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep 2016;14:380-9.

125. Genshaft AS, Li S, Gallant CJ, Darmanis S, Prakadan SM, et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol 2016;17:188.

126. Morrison LE, Lefever MR, Behman LJ, Leibold T, Roberts EA, et al. Brightfield multiplex immunohistochemistry with multispectral imaging. Lab Invest 2020; doi: 10.1038/s41374-020-0429-0.

127. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 2016;19:987-91.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)


All published articles are preserved here permanently:


All published articles are preserved here permanently: