REFERENCES

1. Schirinzi T, Sancesario GM, Di Lazzaro G, D’Elia A, Imbriani P, et al. Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm (Vienna) 2018;125:673-9.

2. Manniche C, Hejl AM, Hasselbalch SG, Simonsen AH. Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus versus Alzheimer’s disease and subcortical ischemic vascular disease: a systematic review. J Alzheimers Dis 2019;68:267-79.

3. Ghosh S, Lippa C. Diagnosis and prognosis in idiopathic normal pressure hydrocephalus. Am J Alzheimers Dis Other Demen 2014;29:583-9.

4. Keong NC, Pena A, Price SJ, Czosnyka M, Czosnyka Z, et al. Imaging normal pressure hydrocephalus: theories, techniques, and challenges. Neurosurg Focus 2016;41:E11.

5. Savolainen S, Hurskainen H, Paljärvi L, Alafuzoff I, Vapalahti M. Five-year outcome of normal pressure hydrocephalus with or without a shunt: predictive value of the clinical signs, neuropsychological evaluation and infusion test. Acta Neurochir (Wien) 2002;144:515-23.

6. Pomeraniec IJ, Bond AE, Lopes MB, Jane JA Sr. Concurrent Alzheimer’s pathology in patients with clinical normal pressure hydrocephalus: correlation of high-volume lumbar puncture results, cortical brain biopsies, and outcomes. J Neurosurg 2016;124:382-8.

7. Graff-Radford NR. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology 2014;83:1573-5.

8. Pomeraniec IJ, Taylor DG, Bond AE, Lopes MB. Concurrent Alzheimer’s pathology in patients with clinical normal pressure hydrocephalus. J Neurosurg Sci 2018; doi: 10.23736/S0390-5616.18.04350-3.

9. McGovern RA, Nelp TB, Kelly KM, Chan AK, Mazzoni P, et al. Predicting cognitive improvement in normal pressure hydrocephalus patients using preoperative neuropsychological testing and cerebrospinal fluid biomarkers. Neurosurgery 2019;85:E662-9.

10. Tarnaris A, Watkins LD, Kitchen ND. Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res 2006;3:11.

11. Agren-Wilsson A, Lekman A, Sjöberg W, Rosengren L, Blennow K, et al. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2007;116:333-9.

12. Saito M, Nishio Y, Kanno S, Uchiyama M, Hayashi A, et al. Cognitive profile of idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra 2011;1:202-11.

13. Espay AJ, Da Prat GA, Dwivedi AK, Rodriguez-Porcel F, Vaughan JE, et al. Deconstructing normal pressure hydrocephalus: ventriculomegaly as early sign of neurodegeneration. Ann Neurol 2017;82:503-13.

14. Nassar BR, Lippa CF. Idiopathic normal pressure hydrocephalus: a review for general practitioners. Gerontol Geriatr Med 2016;2:2333721416643702.

15. Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, et al. Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med 2020;26:285-95.

16. Iliff JJ, Wang MH, Zeppenfeld DM, Venkataraman A, Plog BA, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 2013;33:18190-9.

17. Luciano MG, Dombrowski SM, Qvarlander S, El-Khoury S, Yang J, et al. Novel method for dynamic control of intracranial pressure. J Neurosurg 2017;126:1629-40.

18. Xie LL, Kang HY, Xu QW, Chen MJ, Liao YH, et al. Sleep drives metabolite clearance from the adult brain. Science 2013;342:373-7.

19. Roman GC, Jackson RE, Fung SH, Zhang YJ, Verma AK. Sleep-disordered breathing and idiopathic normal-pressure hydrocephalus: recent pathophysiological advances. Curr Neurol Neurosci Rep 2019;19:39.

20. Ju YE, Zangrilli MA, Finn MB, Fagan AM, Holtzman DM. Obstructive sleep apnea treatment, slow wave activity, and amyloid-beta. Ann Neurol 2019;85:291-5.

21. Gao Y, Tan L, Yu JT. Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 2018;15:283-300.

22. Schirinzi T, Sancesario GM, Ialongo C, Imbriani P, Madeo G, et al. A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front Neurol 2015;6:86.

23. Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, et al. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 2004;127:965-72.

24. Jeppsson A, Wikkelso C, Blennow K, Zetterberg H, Constantinescu R, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg Psychiatry 2019;90:1117-23.

25. Moriya M, Miyajima M, Nakajima M, Ogino I, Arai H. Impact of cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus on the amyloid cascade. PLoS One 2015;10:e0119973.

26. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, et al. Alzheimer’s disease. Lancet 2016;388:505-17.

27. Blennow K, Biscetti L, Eusebi P, Parnetti L. Cerebrospinal fluid biomarkers in Alzheimer’s and Parkinson’s diseases-from pathophysiology to clinical practice. Mov Disord 2016;31:836-47.

28. Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Sutela A, et al. Post-mortem findings in 10 patients with presumed normal-pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol 2012;38:72-86.

29. Silverberg GD. Normal pressure hydrocephalus (NPH): ischaemia, CSF stagnation or both. Brain 2004;127:947-8.

30. Kudo T, Mima T, Hashimoto R, Nakao K, Morihara T, et al. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin Neurosci 2000;54:199-202.

31. Magdalinou N, Lees AJ, Zetterberg H. Cerebrospinal fluid biomarkers in parkinsonian conditions: an update and future directions. J Neurol Neurosurg Psychiatry 2014;85:1065-75.

32. Pyykko OT, Lumela M, Rummukainen J, Nerg O, Seppala TT, et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS One 2014;9:e91974.

33. Miyajima M, Nakajima M, Motoi Y, Moriya M, Sugano H, et al. Leucine-rich alpha2-glycoprotein is a novel biomarker of neurodegenerative disease in human cerebrospinal fluid and causes neurodegeneration in mouse cerebral cortex. PLoS One 2013;8:e74453.

34. Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003;61:1720-5.

35. Jeppsson A, Höltta M, Zetterberg H, Blennow K, Wikkelsø C, et al. Amyloid mis-metabolism in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2016;13:13.

36. Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology 2013;80:1385-92.

37. Tullberg M, Blennow K, Mansson JE, Fredman P, Tisell M, et al. Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. Eur J Neurol 2007;14:248-54.

38. Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelso C. CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology 1998;50:1122-7.

39. Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, et al. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 2006;53:372-81.

40. Miller A, Glass-Marmor L, Abraham M, Grossman I, Shapiro S, et al. Bio-markers of disease activity and response to therapy in multiple sclerosis. Clin Neurol Neurosurg 2004;106:249-54.

41. Lamers KJB, Vos P, Verbeek MM, Rosmalen F, van Geel WJA, et al. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res Bull 2003;61:261-4.

42. Longatti PL, Canova G, Guida F, Carniato A, Moro M, et al. The CSF myelin basic protein: a reliable marker of actual cerebral damage in hydrocephalus. J Neurosurg Sci 1993;37:87-90.

43. Nakajima M, Miyajima M, Ogino I, Watanabe M, Miyata H, et al. Leucine-rich alpha-2-glycoprotein is a marker for idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2011;153:1339-46.

44. Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, et al. Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 2016;1.

45. Tarkowski E, Tullberg M, Fredman P, Wikkelso C. Normal pressure hydrocephalus triggers intrathecal production of TNF-alpha. Neurobiol Aging 2003;24:707-14.

46. Castaneyra-Ruiz L, Gonzalez-Marrero I, Carmona-Calero EM, Abreu-Gonzalez P, Lecuona M, et al. Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2016;146:76-81.

47. Li X, Miyajima M, Jiang C, Arai H. Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus. Neurosci Lett 2007;413:141-4.

48. Pfanner T, Henri-Bhargava A, Borchert S. Cerebrospinal fluid biomarkers as predictors of shunt response in idiopathic normal pressure hydrocephalus: a systematic review. Can J Neurol Sci 2018;45:3-10.

49. Zhang X, Huang WJ, Chen WW. TGF-beta1 factor in the cerebrovascular diseases of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 2016;20:5178-85.

50. Crawley JT, Goulding DA, Ferreira V, Severs NJ, Lupu F. Expression and localization of tissue factor pathway inhibitor-2 in normal and atherosclerotic human vessels. Arterioscler Thromb Vasc Biol 2002;22:218-24.

51. Sosvorova L, Vcelak J, Mohapl M, Vitku J, Bicikova M, et al. Selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in normal pressure hydrocephalus. Neuro Endocrinol Lett 2014;35:586-93.

52. Sosvorova L, Mohapl M, Vcelak J, Hill M, Vitku J, et al. The impact of selected cytokines in the follow-up of normal pressure hydrocephalus. Physiol Res 2015;64:S283-90.

53. Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res Ther 2015;7:59.

54. Poca MA, Mataró M, Sahuquillo J, Catalán R, Ibañez J, et al. Shunt related changes in somatostatin, neuropeptide Y, and corticotropin releasing factor concentrations in patients with normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2001;70:298-304.

55. Tisell M, Tullberg M, Mansson JE, Fredman P, Blennow K, et al. Differences in cerebrospinal fluid dynamics do not affect the levels of biochemical markers in ventricular CSF from patients with aqueductal stenosis and idiopathic normal pressure hydrocephalus. Eur J Neurol 2004;11:17-23.

56. Wikkelsö C, Ekman R, Westergren I, Johansson B. Neuropeptides in cerebrospinal fluid in normal-pressure hydrocephalus and dementia. Eur Neurol 1991;31:88-93.

57. Tullberg M, Mansson JE, Fredman P, Lekman A, Blennow K, et al. CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry 2000;69:74-81.

58. Nooijen PT, Schoonderwaldt HC, Wevers RA, Hommes OR, Lamers KJ. Neuron-specific enolase, S-100 protein, myelin basic protein and lactate in CSF in dementia. Dement Geriatr Cogn Disord 1997;8:169-73.

59. Tarnaris A, Toma AK, Pullen E, Chapman MD, Petzold A, et al. Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus. Alzheimers Dement 2011;7:501-8.

60. Fersten E, Gordon-Krajcer W, Glowacki M, Mroziak B, Jurkiewicz J, et al. Cerebrospinal fluid free-radical peroxidation products and cognitive functioning patterns differentiate varieties of normal pressure hydrocephalus. Folia Neuropathol 2004;42:133-40.

61. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7:41-53.

62. Chow BW, Gu C. The molecular constituents of the blood-brain barrier. Trends Neurosci 2015;38:598-608.

63. Janelidze S, Hertze J, Nagga K, Nilsson K, Nilsson C, et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging 2017;51:104-12.

64. Eide PK, Pripp AH. Increased prevalence of cardiovascular disease in idiopathic normal pressure hydrocephalus patients compared to a population-based cohort from the HUNT3 survey. Fluids Barriers CNS 2014;11:19.

65. Krauss JK, Regel JP, Vach W, Orszagh M, Jungling FD, et al. White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery 1997;40:491-5.

66. Jaraj D, Agerskov S, Rabiei K, Marlow T, Jensen C, et al. Vascular factors in suspected normal pressure hydrocephalus: a population-based study. Neurology 2016;86:592-9.

67. Graff-Radford NR, Knopman DS, Penman AD, Coker LH, Mosley TH. Do systolic BP and pulse pressure relate to ventricular enlargement? Eur J Neurol 2013;20:720-4.

68. Miyajima M, Nakajima M, Ogino I, Miyata H, Motoi Y, et al. Soluble amyloid precursor protein alpha in the cerebrospinal fluid as a diagnostic and prognostic biomarker for idiopathic normal pressure hydrocephalus. Eur J Neurol 2013;20:236-42.

69. Mashayekhi F, Salehi Z. Expression of nerve growth factor in cerebrospinal fluid of congenital hydrocephalic and normal children. Eur J Neurol 2005;12:632-7.

70. Yang JT, Chang CN, Hsu YH, Wei KC, Lin TK, et al. Increase in CSF NGF concentration is positively correlated with poor prognosis of postoperative hydrocephalic patients. Clin Biochem 1999;32:673-5.

71. Del Bigio MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol 1993;85:573-85.

72. Li X, Miyajima M, Mineki R, Taka H, Murayama K, et al. Analysis of cerebellum proteomics in the hydrocephalic H-Tx rat. Neuroreport 2005;16:571-4.

73. Yang J, Dombrowski SM, Krishnan C, Krajcir N, Deshpande A, et al. Vascular endothelial growth factor in the CSF of elderly patients with ventriculomegaly: variability, periodicity and levels in drainage responders and non-responders. Clin Neurol Neurosurg 2013;115:1729-34.

74. Yang J, Shanahan KJ, Shriver LP, Luciano MG. Exercise-induced changes of cerebrospinal fluid vascular endothelial growth factor in adult chronic hydrocephalus patients. J Clin Neurosci 2016;24:52-6.

75. Huang H, Yang J, Luciano M, Shriver LP. Longitudinal metabolite profiling of cerebrospinal fluid in normal pressure hydrocephalus links brain metabolism with exercise-induced VEGF production and clinical outcome. Neurochem Res 2016;41:1713-22.

76. Bartosik-Psujek H, Stelmasiak Z. Biochemical markers of damage of the central nervous system in multiple sclerosis. Ann Univ Mariae Curie Sklodowska Med 2001;56:389-92.

77. Mase M, Yamada K, Shimazu N, Seiki K, Oda H, et al. Lipocalin-type prostaglandin D synthase (beta-trace) in cerebrospinal fluid: a useful marker for the diagnosis of normal pressure hydrocephalus. Neurosci Res 2003;47:455-9.

78. Shaw LM, Hansson O, Manuilova E, Masters CL, Doecke JD, et al. Method comparison study of the Elecsys(R) beta-Amyloid (1-42) CSF assay versus comparator assays and LC-MS/MS. Clin Biochem 2019;72:7-14.

79. Yang J, Dombrowski SM, Deshpande A, Krajcir N, El-Khoury S, et al. Stability analysis of vascular endothelial growth factor in cerebrospinal fluid. Neurochem Res 2011;36:1947-54.

80. Schindler SE, Gray JD, Gordon BA, Xiong C, Batrla-Utermann R, et al. Cerebrospinal fluid biomarkers measured by Elecsys assays compared to amyloid imaging. Alzheimers Dement 2018;14:1460-9.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/