REFERENCES
1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97-109.
2. Haar CP, Hebbar P, Wallace GC 4th, Das A, Vandergrift WA 3rd, et al. Drug resistance in glioblastoma: a mini review. Neurochem Res 2012;37:1192-200.
3. Yelton CJ, Ray SK. Multiple mechanisms of drug resistance in glioblastoma and novel therapeutic opportunities. In: Wantanabe HS, editor. Horizons in cancer research. New York: Nova Publishers; 2018.
4. Haque A, Nagarkatti M, Nagarkatti P, Banik NL, Ray SK. Immunotherapy for glioblastoma. In: Ray SK, editor. Glioblastoma. New York: Springer; 2010. pp. 365-97.
5. Haque A, Banik NL, Ray SK. Molecular alterations in glioblastoma: potential targets for immunotherapy. Prog Mol Biol Transl Sci 2011;98:187-234.
6. Yang R, Wu Y, Wang M, Sun Z, Zou J, et al. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation. Oncotarget 2015;6:7644-56.
7. Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006;90:51-81.
9. Pham T, Roth S, Kong J, Guerra G, Narasimhan V, et al. An update on immunotherapy for solid tumors: a review. Ann Surg Oncol 2018;25:3404-12.
10. Rodriguez A, Brown C, Badie B. Chimeric antigen receptor T-cell therapy for glioblastoma. Transl Res 2017;187:93-102.
11. Simonelli M, Persico P, Perrino M, Zucali PA, Navarria P, et al. Checkpoint inhibitors as treatment for malignant gliomas: “a long way to the top”. Cancer Treat Rev 2018;69:121-31.
14. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol Rev 2006;213:48-65.
16. Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K. The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 2012;33:579-89.
17. Reardon DA, Wen PY, Wucherpfennig KW, Sampson JH. Immunomodulation for glioblastoma. Curr Opin Neurol 2017;30:361-9.
18. Allen BK, Stathias V, Maloof ME, Vidovic D, Winterbottom EF, et al. Epigenetic pathways and glioblastoma treatment: insights from signaling cascades. J Cell Biochem 2015;116:351-63.
19. Adamopoulou E, Naumann U. HDAC inhibitors and their potential applications to glioblastoma therapy. Oncoimmunology 2013;2:e25219.
20. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 2007;1:19-25.
21. Hrabeta J, Stiborova M, Adam V, Kizek R, Eckschlager T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014;158:161-9.
22. Höring E, Podlech O, Silkenstedt B, Rota IA, Adamopoulou E, et al. The histone deacetylase inhibitor trichostatin a promotes apoptosis and antitumor immunity in glioblastoma cells. Anticancer Res 2013;33:1351-60.
23. Inoue A, Fujimoto D. Enzymatic deacetylation of histone. Biochem Biophys Res Commun 1969;36:146-50.
24. Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014;6:a018713.
25. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulatory Rpd3p. Science 1996;272:408-11.
26. Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett 2009;280:168-76.
27. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795-800.
28. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 1964;51:786-94.
29. Wang Z, Zang C, Cui K, Schones DE, Barski A, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009;138:1019-31.
30. Kim E, Bisson WH, Löhr CV, Williams DE, Ho E, et al. Histone and non-histone targets of dietary deacetylase inhibitors. Curr Top Med Chem 2016;16:714-31.
31. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834-40.
32. Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem 2014;62:11-33.
33. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014;13:673-91.
35. Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 2006;38:566-9.
36. Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016; doi: 10.1101/cshperspect.a026831.
37. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 2014;124:30-9.
38. Lucio-Eterovic AK, Cortez MA, Valera ET, Motta FJ, Queiroz RG, et al. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 2008;8:243.
39. Nagarajan RP, Costello JF. Epigenetic mechanisms in glioblastoma multiforme. Sem Cancer Biol 2009;19:188-97.
40. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-12.
41. Lee DH, Ryu HW, Won HR, Kwon SH. Advances in epigenetic glioblastoma therapy. Oncotarget 2017;8:18577-89.
42. Staberg M, Michaelsen SR, Rasmussen RD, Villingshøj M, Poulsen HS, et al. Inhibition of histone deacetylases sensitizes glioblastoma cells to loumustine. Cell Oncol (Dordr) 2017;40:21-32.
43. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015;125:3335-7.
44. Feng J, Yan PF, Zhao HY, Zhang FC, Zhao WH, et al. SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress, and suppression of JAK2/STAT3 signaling pathway activation. Oncol Rep 2016;35:1395-402.
45. Romeo SG, Conti A, Polito F, Tomasello C, Barresi V, et al. miRNA regulation of sirtuin-1 expression in human astrocytoma. Oncol Lett 2016;12:2992-8.
46. Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2006;2:e40.
48. Riggs MG, Whittaker RG, Neumann JR, Ingram VM. n-Butyrate causes histone modification in HeLa and friend erythroleukaemia cells. Nature 1977;268:462-4.
49. Candido EP, Reeves R, Davie JR. Sodium butyrate inhibitis histone deacetylation in cultured cells. Cell 1978;14:105-13.
50. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990;265:17174-9.
51. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 1993;268:22429-35.
52. Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 1998;241:126-33.
53. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 1998;95:3003-7.
54. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5:769-84.
55. Bezecny P. Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol 2014;31:985.
56. Lee P, Murphy B, Miller R, Menon V, Banik NL, et al. Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Res 2015;35:615-25.
57. Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 2008;269:7-17.
58. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, et al. Molecularly targeted therapy for malignant glioma. Cancer 2007;110:13-24.
59. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 2004;101:1241-6.
60. Kim SW, Hooker JM, Otto N, Win K, Muench L, et al. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Bio 2013;40:912-8.
61. Seo YJ, Kang Y, Muench L, Reid A, Caesar S, et al. Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chem Neurosci 2014;5:588-96.
62. Qiu L, Kelso MJ, Hansen C, West ML, Fairlie DP, et al. Anti-tumor activity in vitro and in vivo of selective differentiating agents containing hydroxamate. Brit J Cancer 1999;80:1252-8.
63. Gray SG, Qian CN, Furge K, Guo X, Teh BT. Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol 2004;24:773-95.
64. Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci 2015;55:7-20.
65. Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 2013;9:1509-26.
66. Asklund T, Kvarnbrink S, Holmlund C, Wibom C, Bergenheim T, et al. Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Res 2012;32:2407-13.
67. Xu J, Sampath D, Lang FF, Prabhu S, Rao G, et al. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures. J Neurooncol 2011;105:241-51.
68. Svechnikova I, Almqvist PM, Ekström TJ. HDAC inhibitors effectively induce cell type-specific differentiation in human glioblastoma cell lines of different origin. Int J Oncol 2008;32:821-7.
69. Papi A, Ferreri AM, Rocchi P, Guerra F, Orlandi M. Epigenetic modifiers as anticancer drugs: effectiveness of valproic acid in neural crest-derived tumor cells. Anticancer Res 2010;30:535-40.
70. Asklund T, Appelskog IB, Ammerpohl O, Ekström TJ, Almqvist PM. Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 2004;40:1073-81.
71. Eyüpoglu IY, Hahnen E, Tränkle C, Savaskan NE, Siebzehnrübl FA, et al. Experimental therapy of malignant gliomas using the inhibitor of histone deacetylase MS-275. Mol Cancer Ther 2006;5:1248-55.
72. Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS One 2012;7:e30815.
73. Sawa H, Murakami H, Kumagai M, Nakasato M, Yamauchi S, et al. Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta Neuropathol 2004;107:523-31.
74. Wallace GC 4th, Haar CP, Vandergrift WA 3rd, Giglio P, Dixon-Mah YN, et al. Mutli-targetted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J Neurooncol 2013;114:43-50.
75. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 2003;100:4389-94.
76. Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a North central cancer treatment group study. J Clin Oncol 2009;27:2052-8.
77. Iwamoto FM, Lamborn KR, Kuhn JG, Wen PY, Yung WK, et al. A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American brain tumor consortium study 03-03. Neuro Oncol 2011;13:509-16.
78. Weller M, Gorlia T, Cairncross JG, van den Bent MJ, Mason W, et al. Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 2011;77:1156-64.
79. Finn OJ. A believer’s overview of cancer immunosurveillance and immunotherapy. J Immunol 2018;200:385-91.
80. Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002;100:1935-47.
81. Ullrich E, Koch J, Cerwenka A, Steinle A. New prospects on the NKG2D/NKG2DL system for oncology. Oncoimmunology 2013;2:e26097.
82. Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, et al. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 2006;129:2416-25.
83. Kim HJ, Bae SC. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 2011;3:166-79.
84. See AP, Parker JJ, Waziri A. The role of regulatory T cells and microglia in the glioblastoma-associated immunosuppression. J Neurooncol 2015;123:405-12.
85. Sampson JH, Schmittling RJ, Archer GE, Congdon KL, Nair SK, et al. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One 2012;7:e31046.
86. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, et al. Anti-PD-1 blockade and stereotatic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 2013;86:343-9.
87. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, et al. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 2009;57:1458-67.
88. Wei J, Wang F, Kong LY, Xu S, Doucette T, et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res 2013;73:3913-26.
89. Avril T, Vauleon E, Tanguy-Royer S, Mosser J, Quillien V. Mechanisms of immunomodulation in human glioblastoma. Immunotherapy 2011;3:42-4.
90. Waziri A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 2010;21:31-42.
91. Albesiano E, Han JE, Lim M. Mechanisms of local immunoresistance in glioma. Neurosurg Clin N Am 2010;21:17-29.
92. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. New Eng J Med 2016;375:2561-9.
93. Jindal V. Role of chimeric antigen receptor T cell therapy in glioblastoma multiforme. Mol Neurobiol 2018;55:8236-42.
94. Tan AC, Heimberger AB, Khasraw M. Immune checkpoint inhibitors in gliomas. Curr Oncol Rep 2017;19:23.
95. Nicholas S, Mathios D, Ruzevick J, Jackson C, Yang I, et al. Current trends in glioblastoma multiforme treatment: radiation therapy and immune checkpoint inhibitors. Brain Tumor Res Treat 2013;1:2-8.
96. Jackson C, Ruzevick J, Brem H, Lim M. Vaccine strategies for glioblastoma: progress and future directions. Immunotherapy 2013;5:155-67.
97. Xu LW, Chow KK, Lim M, Li G. Current vaccine trials in glioblastoma: a review. J Immunol Res 2014;2014:796856.
98. Sampson JH, Mitchell DA. Vaccination strategies for neuro-oncology. Neuro Oncol 2015; doi: 10.1093/neuonc/nov159.
99. Desai R, Suryadevara CM, Batich KA, Farber SH, Sanchez-Perez L, et al. Emerging immunotherapies for glioblastoma. Expert Opin Emerg Drugs 2016;21:133-45.