REFERENCES

1. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 2017;18:3-9.

2. Parker NR, Hudson AL, Khong P, Parkinson JF, Dwight T, et al. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep 2016;6:22477.

3. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. Immunol Rev 2006;213:48-65.

4. Weller RO, Galea I, Carare RO, Minagar A. Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 2010;17:295-306.

5. Jack AS, Lu JQ. Immune cell infiltrates in the central nervous system tumors. Austin Neurosurgery Open Access 2015;2:1024.

6. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest 2010;120:1368-79.

7. Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, et al. Mechanisms of dendritic cell trafficking across the blood-brain barrier. J Neuroimmune Pharmacol 2012;7:74-94.

8. Han S, Zhang C, Li Q, Dong J, Liu Y, et al. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 2014;110:2560-8.

9. Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem Sci 2016;7:842-54.

10. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel) 2016; doi: 10.3390/cancers8030036.

11. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 2018;75:689-713.

12. Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med 2018;69:301-18.

13. Gust J, Hay KA, Hanafi LA, Li D, Myerson D, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 2017;7:1404-19.

14. Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 2018;17:7.

15. Kueberuwa G, Kalaitsidou M, Cheadle E, Hawkins RE, Gilham DE. CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol Ther Oncolytics 2017;8:41-51.

16. Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013;280:5350-70.

17. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cellsT-cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017; doi: 10.1126/scitranslmed.aaa0984.

18. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, et al. Regression of glioblastoma after chimeric antigen receptor T-Cell therapy. N Engl J Med 2016;375:2561-9.

19. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013;122:863-71.

20. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011;19:620-6.

21. Davila ML, Riviere I, Wang X, Bartido S, Park J, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra25.

22. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014;20:119-22.

23. Baum C, Düllmann J, Li Z, Fehse B, Meyer J, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003;101:2099-114.

24. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009;17:1919-28.

25. Morita D, Nishio N, Saito S, Tanaka M, Kawashima N, et al. Enhanced expression of anti-CD19 chimeric antigen receptor in piggyBac transposon-engineered T cells. Mol Ther Methods Clin Dev 2017;8:131-40.

26. Monjezi R, Miskey C, Gogishvili T, Schleef M, Schmeer M, et al. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 2016;31;186-94.

27. Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest 2016;126:3363-76.

28. Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 2015;15;243-54.

29. Krasnova Y, Putz EM, Smyth MJ, Souza-Fonseca-Guimaraes F. Bench to bedside: NK cells and control of metastasis. Clin Immunol 2017;177:50-9.

30. Hayakawa Y, Huntington ND, Nutt SL, Smyth MJ. Functional subsets of mouse natural killer cells. Immunol Rev 2006;214:47-55.

31. Kmiecik J, Zimmer J, Chekenya M. Natural killer cells in intracranial neoplasms: presence and therapeutic efficacy against brain tumours. J Neurooncol 2014;116:1-9.

32. McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR, et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 2005;23:133-41.

33. Steele N, Anthony A, Saunders M, Esmarck B, Ehrnrooth E, et al. A phase 1 trial of recombinant human IL-21 in combination with cetuximab in patients with metastatic colorectal cancer. Br J Cancer 2012;106:793-8.

34. Davis ID, Skrumsager BK, Cebon J, Nicholaou T, Barlow JW, et al. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin Cancer Res 2007;13:3630-6.

35. Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T-cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015;33:74-82.

36. Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector function of IL- 12/15/18-preactivated NK cells against established tumors. J Exp Med 2012;209:2351-65.

37. Vetter M, Hofer MJ, Roth E, Pircher HP, Pagenstecher A. Intracerebral interleukin 12 induces glioma rejection in the brain predominantly by CD8+ T cells and independently of interferon-gamma. J Neuropathol Exp Neurol 2009;68:525-34.

38. Imamura M, Shook D, Kamiya T, Shimasaki N, Chai SM, et al. Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood 2014;124:1081-8.

39. Blackburn SD, Shin H, Freeman GJ, Wherry EJ. Selective expansion of a subset of exhausted CD8 T-cells by alphaPD-L1 blockade. Proc Natl Acad Sci U S A 2008;105:15016-21.

40. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027-34.

41. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, et al. Tissue expression of PD-L1 mediates peripheral T-cell tolerance. J Exp Med 2006;203:883-95.

42. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009;229:12-26.

43. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 2017;214:895-904.

44. Beckermann KE, Jolly PC, Kim JY, Bordeaux J, Puzanov I, et al. Clinical and immunologic correlates of response to PD-1 blockade in a patient with metastatic renal medullary carcinoma. J Immunother Cancer 2017;5:1.

45. Beckermann KE, Johnson DB, Sosman JA. PD-1/PD-L1 blockade in renal cell cancer. Expert Rev Clin Immunol 2017;13:77-84.

46. Allen PB, Gordon LI. PD-1 blockade in Hodgkin’s lymphoma: learning new tricks from an old teacher. Expert Rev Hematol 2016;9:939-49.

47. Garon EB. Current perspectives in immunotherapy for non-small cell lung cancer. Semin Oncol 2015; doi: 10.1053/j.seminoncol.2015.09.019.

48. Robert C, Schachter J, Long GV, Arance A, Grob JJ, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015;372:2521-32.

49. Sonpavde G. PD-1 and PD-L1 inhibitors as salvage therapy for urothelial carcinoma. N Engl J Med 2017;376:1073-4.

50. Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 2011;17:6958-62.

51. Kwon ED, Foster BA, Hurwitz AA, Madias C, Allison JP, et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte- associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci U S A 1999;96:15074-9.

52. Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res 2015;3:399-411.

53. Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 2016;4:124-35.

54. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013;369:122-33.

55. Moertel CL, Xia J, LaRue R, Waldron NN, Andersen BM, et al. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. J Immunother Cancer 2014;2:46.

56. Olin M, Ampudia-Mesias E, Xiong Z, Pluhar E, Moertel C. IMMU-11. Targeting the CD200 checkpoint blockade: a new direction for immunotherapy. Neuro Oncol 2017;19:vi114-5.

57. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 2013;86:343-9.

58. Belcaid Z, Phallen JA, Zeng J, See AP, Mathios D, et al. Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS One 2014; doi: 10.1371/journal.pone.0101764.

59. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014;20:5290-301.

60. Translational Lung Cancer Research. Immunohistochemistry for predictive biomarkers in non-small cell lung cancer. Available from: http://tlcr.amegroups.com/article/view/15648/12897. [Last accessed on 26 Oct 2018].

61. Diggs LP, Hsueh EC. Utility of PD-L1 immunohistochemistry assays for predicting PD-1/PD-L1 inhibitor response. Biomark Res 2017;5:12.

62. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-64.

63. Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol 2016;18:195-205.

64. Sweis RF, Spranger S, Bao R, Paner GP, Stadler WM, et al. Molecular drivers of the non-T Cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol Res 2016;4:563-8.

65. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31:711-23.

66. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Medicine 2017;9:34.

67. Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin Cancer Res 2018;24:4175-86.

68. Nakashima H, Alayo QA, Penaloza-MacMaster P, Freeman GJ, Kuchroo VK, et al. Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T-cells. Sci Rep 2018;8:208.

69. Wang M, Yao LC, Cheng M, Cai D, Martinek J, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J 2018;32:1537-49.

70. Razavi SM, Lee KE, Jin BE, Aujla PS, Gholamin S, et al. Immune evasion strategies of glioblastoma. Front Surg 2016;3:11.

71. Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol 2013;43:2554-65.

72. Vigneron N. Human tumor antigens and cancer immunotherapy. Biomed Res Int 2015;2015:948501.

73. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28:4722-9.

74. Weller M, Butowski N, Tran DD, Recht LD, Lim M, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18:1373-85.

75. Reardon DA, Schuster J, Tran DD, Fink KL, Nabors LB, et al. ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. J Clin Oncol 2015;33:2009.

76. Fenstermaker RA, Ciesielski MJ, Qiu J, Yang N, Frank CL, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother 2016;65:1339-52.

77. Dutoit V, Migliorini D, Patrikidou A, Mayer-Mokler A, Hilf N, et al. IMA950 multipeptide vaccine adjuvanted with poly-ICLC in combination with standard therapy in newly diagnosed HLA-A2 glioblastoma patients. Ann Oncol 2017;28:xi3-5.

78. Wick W, Dietrich PY, Kuttruff S, Hilf N, Frenzel K, et al. GAPVAC-101: First-in-human trial of a highly personalized peptide vaccination approach for patients with newly diagnosed glioblastoma. J Clin Oncol 2018;36:2000.

79. Yaddanapudi K, Mitchell RA, Putty K, Willer S, Sharma RK, et al. Vaccination with embryonic stem cells protects against lung cancer: is a broad-spectrum prophylactic vaccine against cancer possible? PLoS One 2012;7:e42289.

80. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013;19:998-1004.

81. Inoue H, Watanabe A, Sakamoto C, Narusawa M, Hiramoto T, et al. Vaccination with irradiated induced pluripotent stem cells genetically engineered to produce GM-CSF confers potent t-cells-mediated antitumor immunity. Blood 2013;122:4492.

82. Kooreman NG, Kim Y, de Almeida PE, Termglinchan V, Diecke S, et al. Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell 2018;22:501-13.

83. Soling A, Rainov NG. Dendritic cell therapy of primary brain tumors. Mol Med 2001;7:659-67.

84. Polyzoidis S, Ashkan K. DCVax®-L--Developed by Northwest Biotherapeutics. Hum Vaccin Immunother 2014;10:3139-45.

85. Lasky JL 3rd, Panosyan EH, Plant A, Davidson T, Yong WH, et al. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 2013;33:2047-56.

86. Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, et al. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J Immunother Cancer 2014;2:4.

87. Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013;62:125-35.

88. Felzmann T, Witt V, Wimmer D, Ressmann G, Wagner D, et al. Monocyte enrichment from leukapharesis products for the generation of DCs by plastic adherence, or by positive or negative selection. Cytotherapy 2003;5:391-8.

89. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 2018;16:142.

90. Inogés S, Tejada S, de Cerio AL, Gállego Pérez-Larraya J, Espinós J, et al. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J Transl Med 2017;15:104.

91. Ardon H, Van Gool SW, Verschuere T, Maes W, Fieuws S, et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother 2012;61:2033-44.

92. Pellegatta S, Eoli M, Cuccarini V, Anghileri E, Pollo B, et al. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8+ T cell activation in the presence of adjuvant temozolomide. OncoImmunology 2018;7:e1412901.

93. Fadul CE, Fisher JL, Hampton TH, Lallana EC, Li Z, et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 2011;34:382-9.

94. Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, et al. Long-term survival in glioblastoma with Cytomegalovirus pp65-targeted vaccination. Clin Cancer Res 2017;23:1898-1909.

95. Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tønnesen P, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 2013;62:1499-509.

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/