REFERENCES
1. Waziri A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 2010;21:31-42.
2. Taniguchi Y, Ono K, Yoshida S, Tanaka R. Antigen-presenting capability of glial cells under glioma-harboring conditions and the effect of glioma-derived factors on antigen presentation. J Neuroimmunol 2000;111:177-85.
3. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 2013;19:3165-75.
4. Castro MG, Baker GJ, Lowenstein PR. Blocking immunosuppressive checkpoints for glioma therapy: the more the Merrier! Clin Cancer Res 2014;20:5147-9.
5. Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, Cummings T, Allison JP, Bigner DD, Sampson JH. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007;13:2158-67.
6. Zhang Y, Wang C, Zhang Y, Sun M. C6 glioma cells retrovirally engineered to express IL-18 and Fas exert FasL-dependent cytotoxicity against glioma formation. Biochem Biophys Res Commun 2004;325:1240-5.
7. Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 2012;14:584-95.
8. Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, Garcia R, Demaria S, Newcomb EW. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest 2005;85:328-41.
9. Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011;2011:732413.
10. Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 2002;103:171-8.
11. Chahlavi A, Rayman P, Richmond AL, Biswas K, Zhang R, Vogelbaum M, Tannenbaum C, Barnett G, Finke JH. Glioblastomas induce T-lymphocyte death by two distinct pathways involving gangliosides and CD70. Cancer Res 2005;65:5428-38.
12. Kast RE, Hill QA, Wion D, Mellstedt H, Focosi D, Karpel-Massler G, Heiland T, Halatsch ME. Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: potential therapeutic benefit from dapsone, fenofibrate, and ribavirin. Tumour Biol 2017;39:1010428317699797.
13. Kamran N, Kadiyala P, Saxena M, Candolfi M, Li Y, Moreno-Ayala MA, Raja N, Shah D, Lowenstein PR, Castro MG. Immunosuppressive Myeloid Cells' Blockade in the glioma microenvironment enhances the efficacy of immune-stimulatory gene therapy. Mol Ther 2017;25:232-48.
14. Blank U, Karlsson S. TGF-beta signaling in the control of hematopoietic stem cells. Blood 2015;125:3542-50.
15. Chabanon A, Desterke C, Rodenburger E, Clay D, Guerton B, Boutin L, Bennaceur-Griscelli A, Pierre-Louis O, Uzan G, Abecassis L, Bourgeade MF, Lataillade JJ, Le Bousse-Kerdiles MC. A cross-talk between stromal cell-derived factor-1 and transforming growth factor-beta controls the quiescence/cycling switch of CD34(+) progenitors through FoxO3 and mammalian target of rapamycin. Stem Cells 2008;26:3150-61.
16. Bharti AC, Singh SM. Induction of apoptosis in bone marrow cells by gangliosides produced by a T cell lymphoma. Immunol Lett 2000;72:39-48.
17. Bharti AC, Singh SM. Gangliosides derived from a T cell lymphoma inhibit bone marrow cell proliferation and differentiation. Int Immunopharmacol 2001;1:155-65.
18. Gentile PS, Pelus LM. In vivo modulation of myelopoiesis by prostaglandin E2.IV. Prostaglandin E2 induction of myelopoietic inhibitory activity. J Immunol 1988;141:2714-20.
20. Geissler K, Jager E, Ohler L, Gisslinger H, Jager U, Lechner K. Interleukin-10 inhibits autonomous myelopoiesis in patients with myelofibrosis. Eur J Haematol 2015;95:239-43.
21. Oehler L, Kollars M, Bohle B, Berer A, Reiter E, Lechner K, Geissler K. Interleukin-10 inhibits burst-forming unit-erythroid growth by suppression of endogenous granulocyte-macrophage colony-stimulating factor production from T cells. Exp Hematol 1999;27:217-23.
22. King KY, Goodell MA. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 2011;11:685-92.
23. Eskandary H, Basiri M, Nematollahi-Mahani SN, Mehravaran S. The role of stem cells in tumor targeting and growth suppression of gliomas. Biologics 2011;5:61-70.
24. Kim SH, Kwon CH, Nakano I. Detoxification of oxidative stress in glioma stem cells: mechanism, clinical relevance, and therapeutic development. J Neurosci Res 2014;92:1419-24.
25. Bradfute SB, Graubert TA, Goodell MA. Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp Hematol 2005;33:836-43.
26. Deshpande S, Bosbach B, Yozgat Y, Park CY, Moore MA, Besmer P. KIT receptor gain-of-function in hematopoiesis enhances stem cell self-renewal and promotes progenitor cell expansion. Stem Cells 2013;31:1683-95.
27. Katayama N, Shih JP, Nishikawa S, Kina T, Clark SC, Ogawa M. Stage-specific expression of c-kit protein by murine hematopoietic progenitors. Blood 1993;82:2353-60.
28. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004;118:149-61.
29. Ikushima YM, Arai F, Nakamura Y, Hosokawa K, Kubota Y, Hirashima M, Toyama H, Suda T. Enhanced Angpt1/Tie2 signaling affects the differentiation and long-term repopulation ability of hematopoietic stem cells. Biochem Biophys Res Commun 2013;430:20-5.
30. Springer TA, Dustin ML, Kishimoto TK, Marlin SD. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 1987;5:223-52.
31. Sarkar S, Begum Z, Dutta S, Dutta SK, Chaudhuri S, Chaudhuri S. Sheep form of leucocyte function antigen-3 (T11TS) exerts immunostimulatory and anti-tumor activity against experimental brain tumor. A new approach to biological response modifier therapy. J Exp Clin Cancer Res 2002;21:95-106.
32. Giegerich GW, Hein WR, Miyasaka M, Tiefenthaler G, Hunig T. Restricted expression of CD2 among subsets of sheep thymocytes and T lymphocytes. Immunology 1989;66:354-61.
33. Hunig T, Tiefenthaler G, Mitnacht R, Kohler C, Lottspeich F, Meuer S. The "erythrocyte receptor" of T-lymphocytes and T11 target structure (T11TS): complementary cell interaction molecules involved in T-cell activation. Behring Inst Mitt 1987:31-40.
34. Kumar P, Chatterjee S, Acharya S, Kumari A, Chaudhuri S, Singh MK, Ghosh SN, Chaudhuri S. Significant modulation of macrophages associated cytokines TNF-alpha, VEGF and apoptotoic protein Bax, Bcl2 abrogates tumor cells. Cell Immunol 2013;284:172-81.
35. Begum Z, Ghosh A, Sarkar S, Mukherjee J, Mazumdar M, Sarkar P, Chaudhuri S. Documentation of immune profile of microglia through cell surface marker study in glioma model primed by a novel cell surface glycopeptide T11TS/SLFA-3. Glycoconj J 2004;20:515-23.
36. Bhattacharjee M, Acharya S, Ghosh A, Sarkar P, Chatterjee S, Kumar P, Chaudhuri S. Bax and Bid act in synergy to bring about T11TS-mediated glioma apoptosis via the release of mitochondrial cytochrome c and subsequent caspase activation. Int Immunol 2008;20:1489-505.
37. Chaudhuri S, Singh MK, Bhattacharya D, Datta A, Hazra I, Mondal S, Faruk Sk Md O, Ronsard L, Ghosh TK, Chaudhuri S. T11TS immunotherapy repairs PI3K-AKT signaling in T-cells: clues toward enhanced T-cell survival in rat glioma model. J Cell Physiol 2018;233:759-70.
38. Chaudhuri S, Bhattacharya D, Singh MK, Moitra S, Ronsard L, Ghosh TK, Chaudhuri S. Disease relevance of T11TS-induced T-cell signal transduction through the CD2-mediated calcineurin-NFAT pathway: perspectives in glioma immunotherapy. Mol Immunol 2015;67:256-64.
39. Mukherjee J, Ghosh A, Ghosh A, Chaudhuri S. ENU administration causes genomic instability along with single nucleotide polymorphisms in p53 during gliomagenesis: T11TS administration demonstrated in vivo apoptosis of these genetically altered tumor cells. Cancer Biol Ther 2006;5:156-64.
40. Mukherjee J, Ghosh A, Sarkar S, Mazumdar M, Sarkar P, Duttagupta AK, Chaudhuri S. T11TS/S-LFA3 induces apoptosis of the brain tumor cells: a new approach to characterise the apoptosis associated genetic changes by arbitrarily primed-PCR. Cancer Lett 2005;222:23-38.
41. Mondal S, Hazra I, Datta A, Sk Md OF, Moitra S, Tripathi SK, Chaudhuri S. T11TS repress gliomagenic apoptosis of bone marrow hematopoietic stem cells. J Cell Physiol 2018;233:269-90.
42. Druckrey H, Ivankovic S, Gimmy J. Cancerogenic effects of methyl- and ethyl-nitrosourea (MNU and ENU) at single intracerebral and intracarotidal injection in newborn and young BD-rats. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 1973;79:282-97.
43. Singer B, Dosanjh MK. Site-directed mutagenesis for quatitation of base base interactions at defined sites. Mutat Res 1990;233:45-51.
44. Branstetter DG, Stoner GD, Schut HAJ, Senitzer D, Conran PB, Goldblatt PJ. Ethylnitrosourea-induced transplacental carcinogenesis in the mouse: tumor response, DNA binding, and adduct formation. Cancer Research 1987;47:348-52.
45. Ghosh A, Bhattacharya M, Sarkar P, Acharya S, Chaudhuri S. T11 target structure exerts effector function by activating immune cells in CNS against glioma where cytokine modulation provide favorable microenvironment. Indian J Exp Biol 2010;48:879-88.
46. Chatterjee S, Dutta RK, Basak P, Das P, Das M, Pereira JA, Chaklader M, Chaudhuri S, Law S. Alteration in marrow stromal microenvironment and apoptosis mechanisms involved in aplastic anemia: an animal model to study the possible disease pathology. Stem Cells Int 2010;2010:932354.
47. Bhattacharya D, Singh MK, Chaudhuri S, Acharya S, Basu AK, Chaudhuri S. T11TS impedes glioma angiogenesis by inhibiting VEGF signaling and pro-survival PI3K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells. J Neurooncol 2013;113:13-25.
48. Law S, Maiti D, Palit A, Majumder D, Basu K, Chaudhuri S, Chaudhuri S. Facilitation of functional compartmentalization of bone marrow cells in leukemic mice by biological response modifiers: an immunotherapeutic approach. Immunol Lett 2001;76:145-52.
49. Civin CI, Banquerigo ML, Strauss LC, Loken MR. Antigenic analysis of hematopoiesis. VI. Flow cytometric characterization of My-10-positive progenitor cells in normal human bone marrow. Exp Hematol 1987;15:10-7.
50. Sutherland DR, Keating A. The CD34 antigen: structure, biology, and potential clinical applications. J Hematother 1992;1:115-29.
51. Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003;101:517-23.
52. Sogo S, Inaba M, Ogata H, Hisha H, Adachi Y, Mori S, Toki J, Yamanishi K, Kanzaki H, Adachi M, Ikehara S. Induction of c-kit molecules on human CD34+/c-kit < low cells: evidence for CD34+/c-kit < low cells as primitive hematopoietic stem cells. Stem Cells 1997;15:420-9.
53. Ema H, Takano H, Sudo K, Nakauchi H. In vitro self-renewal division of hematopoietic stem cells. J Exp Med 2000;192:1281-8.
54. Shin JY, Hu W, Naramura M, Park CY. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med 2014;211:217-31.
55. Yokota T, Oritani K, Butz S, Ewers S, Vestweber D, Kanakura Y. Markers for hematopoietic stem cells: histories and recent achievements. In: Advances in Hematopoietic Stem Cell Research. Mexico City: InTech; 2012. pp. 77-88.
56. Mukherjee J, Sarkar S, Ghosh A, Duttagupta AK, Chaudhuri S, Chaudhuri S. Immunotherapeutic effects of T11TS/S-LFA3 against nitrosocompound mediated neural genotoxicity. Toxicol Lett 2004;150:239-57.
57. Ghosh A, Mukherjee J, Bhattacharjee M, Sarkar P, Acharya S, Chaudhuri S. T11TS/SLFA-3 differentially regulate the population of microglia and brain infiltrating lymphocytes to reduce glioma by modulating intrinsic Bcl-2 expression rather than p53. Cent Nerv Syst Agents Med Chem 2007;7:145-55.
58. Acharya S, Chatterjee S, Kumar P, Bhattacharjee M, Chaudhuri S, Chaudhuri S. Induction of G1 arrest in glioma cells by T11TS is associated with upregulation of Cip1/Kip1 and concurrent downregulation of cyclin D (1 and 3). Anticancer Drugs 2010;21:53-64.
59. Singh MK, Bhattacharya D, Chaudhuri S, Acharya S, Kumar P, Santra P, Basu AK, Chaudhuri S. T11TS inhibits glioma angiogenesis by modulation of MMPs, TIMPs, with related integrin alphav and TGF-beta1 expressions. Tumour Biol 2014;35:2231-46.
60. Sarkar S, Ghosh A, Mukherjee J, Chaudhuri S, Chaudhuri S. CD2-SLFA3/T11TS interaction facilitates immune activation and glioma regression by apoptosis. Cancer Biol Ther 2004;3:1121-8.
61. Mukherjee J, Ghosh A, Sarkar P, Mazumdar M, Banerjee C, Chaudhuri S. Immunotherapy with T11TS/S-LFA-3 specifically induces apoptosis of brain tumor cells by augmenting intracranial immune status. Anticancer Res 2005;25:2905-19.
62. Ghosh A, Bhattacharya M, Sarkar P, Acharya S, Chaudhuri S. T11 target structure exerts effector function by activating immune cells in CNS against glioma where cytokine modulation provide favorable microenvironment. Indian J Exp Biol 2010;48:879-88.
63. Kumar P, Chatterjee S, Acharya S, Kumari A, Chaudhuri S, Singh MK, Ghosh SN, Chaudhuri S. Significant modulation of macrophages associated cytokines TNF-alpha, VEGF and apoptotoic protein Bax, Bcl2 abrogates tumor cells. Cell Immunol 2013;284:172-81.
64. Bhattacharjee M, Acharya S, Ghosh A, Sarkar P, Chatterjee S, Kumar P, Chaudhuri S. Bax and Bid act in synergy to bring about T11TS-mediated glioma apoptosis via the release of mitochondrial cytochrome c and subsequent caspase activation. Int Immunol 2008;20:1489-505.
65. Bhattacharya D, Singh MK, Chaudhuri S, Datta A, Chaudhuri S. T11TS treatment augments apoptosis of glioma associated brain endothelial cells, hint toward anti-angiogenic action in glioma. J Cell Physiol 2017;232:526-39.
66. Mukherjee J, Sarkar S, Ghosh A, Duttagupta AK, Chaudhuri S, Chaudhuri S. Immunotherapeutic effects of T11TS/S-LFA3 against nitrosocompound mediated neural genotoxicity. Toxicol Lett 2004;150:239-57.
67. Begum Z, Ghosh A, Sarkar S, Mukherjee J, Mazumdar M, Sarkar P, Chaudhuri S. Documentation of immune profile of microglia through cell surface marker study in glioma model primed by a novel cell surface glycopeptide T11TS/SLFA-3. Glycoconj J 2003;20:515-23.
68. Stella CC, Cazzola M, De FP, De VA, Gianni AM, Lanza F, Lauria F, Lemoli RM, Tarella C, Zanon P. CD34-positive cells: biology and clinical relevance. Haematologica 1995;80:367-87.
69. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990;110:1001-20.
70. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996;273:242-5.
71. Holmes C, Stanford WL. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 2007;25:1339-47.
72. Walasek MA, Bystrykh LV, Olthof S, de HG, van OR. Sca-1 is an early-response target of histone deacetylase inhibitors and marks hematopoietic cells with enhanced function. Exp Hematol 2013;41:113-23.
73. Harman BC, Northrup DL, Allman D. Resolution of unique Sca-1highc-Kit- lymphoid-biased progenitors in adult bone marrow. J Immunol 2008;181:7514-24.
74. Orschell-Traycoff CM, Hiatt K, Dagher RN, Rice S, Yoder MC, Srour EF. Homing and engraftment potential of Sca-1(+)lin(-) cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood 2000;96:1380-7.
75. Simmons PJ, Aylett GW, Niutta S, To LB, Juttner CA, Ashman LK. C-kit is expressed by primitive human hematopoietic cells that give rise to colony-forming cells in stroma-dependent or cytokine-supplemented culture. Exp Hematol 1994;22:157-65.
76. Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, Kina T, Nakauchi H, Nishikawa S. Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med 1991;174:63-71.
77. Katayama N, Clark SC, Ogawa M. Growth factor requirement for survival in cell-cycle dormancy of primitive murine lymphohematopoietic progenitors. Blood 1993;81:610-6.
78. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Nishikawa S, Miura Y, Suda T. Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood 1991;78:1706-12.
79. Henrich CJ, Goncharova EI, Wilson JA, Gardella RS, Johnson TR, McMahon JB, Takada K, Bokesch HR, Gustafson KR. Natural products active in aberrant c-Kit signaling. Chem Biol Drug Des 2007;69:321-30.
80. Lian Z, Toki J, Yu C, Hayashi H, Yasumizu R, Sugiura K, Jin T, Inaba M, Hisha H, Li Y, Yu W, Fan H, Ikehara S. Intrathymically injected hemopoietic stem cells can differentiate into all lineage cells in the thymus: differences between c-kit+ cells and c-kit < low cells. Stem Cells 1997;15:430-6.
81. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001;17:387-403.
82. Morrison SJ, Wright DE, Weissman IL. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci U S A 1997;94:1908-13.
83. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000;100:157-68.
84. Arai F, Hirao A, Suda T. Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc Med 2005;15:75-9.
85. Arai F, Suda T. Quiescent stem cells in the niche. Cambridge (MA): Harvard Stem Cell Institute; 2008 .
86. Bhattacharya D, Chaudhuri S, Singh MK, Chaudhuri S. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model. Exp Mol Pathol 2015;98:455-66.