fig6

Neuroprotection by minocycline in murine traumatic spinal cord injury: analyses of matrix metalloproteinases

Figure 6. Minocycline treatment increases neuronal survival at the site of SCI. Panels A and B are representative pictures taken from normal uninjured cord immunostained with the neuronal marker, NeuN. Spinal cord compression produces injury at the lesion site that is characterized by a qualitative decrease in the number of NeuN positive cells (C and D, day 5). Minocycline treatment appears qualitatively to preserve some of the neurons within the vicinity of the lesion site (E and F), which was verified by blinded counts of NeuN-positive cells at the lesion epicenter as well as in areas 1 and 2 mm rostral (R) and caudal (C) to the lesion (G, mean ± SD). Panel G shows the data from day 2, and a similar pattern was found at day 5 after injury (data not shown); there were 9 mice per group, where one longitudinal section containing the central canal per mouse was examined. Univariate analysis of variance with scheffe post-hoc comparisons revealed that the difference associated with area (-2, -1, 0, +1 or +2) was significant (P < 0.001), with the number of cells remaining in the lesion epicenter being reduced compared to adjacent regions. Furthermore, there was a significant group effect with minocycline treated animals having more remaining neurons than vehicle treated controls (P < 0.001). SCI: spinal cord injury

Neuroimmunology and Neuroinflammation
ISSN 2349-6142 (Online) 2347-8659 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/