Volume

Volume 2, Issue 4 (December, 2023) – 5 articles

Cover Picture: When addressing the dynamic reliability analysis of structures, it becomes necessary to account for multiple limit state functions or their combinations. In scenarios where structures are subjected to random excitation, this can lead to intricate inter-dependencies among different limit states, and the computational workload can pose a substantial challenge in ensuring sufficient precision. Code-based design primarily ensures safety at the member level, while deterministic optimization fails to accommodate the inherent uncertainties associated with external excitation or the system as a whole. Therefore, in such cases, to address both the uncertainties in excitations and the presence of multiple limit states while mitigating computational challenges, equivalent extreme-value criteria are employed within the framework of the probability density evolution method to calculate the global reliability of the structure subjected to stochastic ground motions generated from the physically motivated stochastic ground motion model. Numerical optimization is subsequently conducted using genetic algorithms, aiming to minimize the cost of the superstructure while adhering to the design performance criteria related to the inter-story drift ratio and considering global reliability. Additionally, multi-objective optimization is carried out using NSGA-II, permitting the generation of multiple solutions, from which one can select the most suitable solution as needed. The numerical results illustrate the effectiveness of this technique in achieving an optimal balance between the cost of the structure and the consideration of global reliability, providing a comprehensive solution for dynamic reliability analysis and design optimization of structures under random excitations.
view this paper

Research Article

Actions for 0 selected articles

Disaster Prevention and Resilience
ISSN 2832-4056 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/