REFERENCES
1. Clausius, R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen. der. Physik. 1865, 201, 353-400. (In German).
2. Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Kais. Akad. der. Wissenschaften,. Wien. 1872, 66. , 275-370. (in German). https://books.google.com/books?id=Fmy5PgAACAAJ. (accessed 26 December 2025).
3. Gibbs, J. W. Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics; Charles Scribner’s Sons, 1902.
4. Gibbs, J. W. The collected works of J. Willard Gibbs: Vol. II Elementary Principles in Statistical Mechanics; Yale University Press, Vol. II, 1948. https://www.amazon.com/Collected-Works-Willard-Gibbs-Vol/dp/1528262360. (accessed 2025-12-26).
5. Gibbs, J. W. Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics; Cambridge University Press, 2011.
6. Shannon, C. E. A mathematical theory of communication: Part I and II. Bell. Syst. Tech. J. 1948, 27, 379-423.
7. Schrödinger, E. Quantisierung als Eigenwertproblem. Annalen. der. Physik. 2006, 384, 361-76. (in German).
8. Wang, Y.; Hector, L. G.; Zhang, H.; Shang, S. L.; Chen, L. Q.; Liu, Z. K. Thermodynamics of the Ceγ-α transition: density-functional study. Phys. Rev. B. 2008, 78, 104113.
9. Wang, Y.; Hector Jr, L. G.; Zhang, H.; Shang, S. L.; Chen, L. Q.; Liu, Z. K. A thermodynamic framework for a system with itinerant-electron magnetism. J. Phys:. Condens. Matter. 2009, 21, 326003.
10. Liu, Z. K.; Li, B.; Lin, H. Multiscale entropy and its implications to critical phenomena, emergent behaviors, and information. J. Phase. Equilib. Diffus. 2019, 40, 508-21.
11. Liu, Z. K.; Wang, Y.; Shang, S. Zentropy theory for positive and negative thermal expansion. J. Phase. Equilib. Diffus. 2022, 43, 598-605.
12. Wang, Y.; Liu, Z. K.; Chen, L. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta. Mater. 2004, 52, 2665-71.
13. Shang, S.; Wang, Y.; Kim, D.; Liu, Z. K. First-principles thermodynamics from phonon and Debye model: application to Ni and Ni3Al. Comput. Mater. Sci. 2010, 47, 1040-8.
14. Perdew, J. P. SCAN meta-GGA, strong correlation, symmetry breaking, self-interaction correction, and semi-classical limit in density functional theory: Hidden connections and beneficial synergies? APL. Computational. Physics. 2025, 1, 010903.
15. Wang, S.; Shang, S. -L.; Liu, Z. K.; Hao, W. ZENN: a thermodynamics-inspired computational framework for heterogeneous data-driven modeling. Proc. Natl. Acad. Sci. 2025, 123, e2511227122.
16. Myers, L. A.; Hew, N. L. E.; Shang, S. -L.; Liu, Z. K. Recursive entropy in thermodynamics: establishing the statistical-physics basis of the zentropy approach.
17. Bekenstein, J. D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D. 1974, 9, 3292-300.
20. Liu, Z. K.; Hew, N. L. E.; Shang, S. Zentropy theory for accurate prediction of free energy, volume, and thermal expansion without fitting parameters. Microstructures 2024, 4, 2024009.
21. ZENN on Github. https://github.com/WilliamMoriaty/ZENN. (accessed 2025-12-26).


