REFERENCES
1. Zhang, D.; Sial, M. S.; Ahmad, N.; et al. Water scarcity and sustainability in an emerging economy: a management perspective for future. Sustainability 2021, 13, 144.
2. van Vliet, M. T. H.; Jones, E. R.; Flörke, M.; et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 2021, 16, 024020.
3. Morin-Crini, N.; Lichtfouse, E.; Liu, G.; et al. Worldwide cases of water pollution by emerging contaminants: a review. Environ. Chem. Lett. 2022, 20, 2311-38.
4. Saravanan, A.; Senthil, Kumar., P.; Jeevanantham, S.; et al. Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 2021, 280, 130595.
5. United Nations Environment Programme. Stockholm Convention on Persistent Organic Pollutants (POPs). https://www.pops.int/. (accessed 28 May 2025).
6. Ma, D.; Yi, H.; Lai, C.; et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104.
7. Li, H.; Cao, Y.; Liu, P.; et al. Ammonia-nitrogen removal from water with gC3N4-rGO-TiO2 Z-scheme system via photocatalytic nitrification-denitrification process. Environ. Res. 2022, 205, 112434.
8. Ren, G.; Han, H.; Wang, Y.; et al. Recent advances of photocatalytic application in water treatment: a review. Nanomaterials 2021, 11, 1804.
9. Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC. Adv. 2014, 4, 37003-26.
10. Wang, H.; Zhang, L.; Chen, Z.; et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-44.
11. Datta, P.; Roy, S. Recent development of photocatalytic application towards wastewater treatment. Catal. Res. 2023, 3, 1-23.
12. Rahim Pouran, S.; Abdul Aziz, A. R.; Wan Daud, W. M. A. Review on the main advances in photo-fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 2015, 21, 53-69.
13. Lee, D.; Kim, M.; Danish, M.; Jo, W. State-of-the-art review on photocatalysis for efficient wastewater treatment: attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation. Catal. Commun. 2023, 183, 106764.
14. Ahuja, T.; Brighu, U.; Saxena, K. Recent advances in photocatalytic materials and their applications for treatment of wastewater: a review. J. Water. Process. Eng. 2023, 53, 103759.
15. Jorfi, S.; Barzegar, G.; Ahmadi, M.; et al. Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J. Environ. Manage. 2016, 177, 111-8.
16. Souza, R. P.; Freitas, T. K.; Domingues, F. S.; et al. Photocatalytic activity of TiO2, ZnO and Nb2O5 applied to degradation of textile wastewater. J. Photochem. Photobiol. A. 2016, 329, 9-17.
17. García-Muñoz, P.; Pliego, G.; Zazo, J. A.; et al. Treatment of hospital wastewater through the CWPO-photoassisted process catalyzed by ilmenite. J. Environ. Chem. Eng. 2017, 5, 4337-43.
18. Che, W.; Luo, Y.; Deng, F.; et al. Facile solvothermal fabrication of cubic-like reduced graphene oxide/AgIn5S8 nanocomposites with anti-photocorrosion and high visible-light photocatalytic performance for highly-efficient treatment of nitrophenols and real pharmaceutical wastewater. Appl. Catal. A. Gen. 2018, 565, 170-80.
19. Mahdizadeh, F.; Aber, S. Treatment of textile wastewater under visible LED lamps using CuO/ZnO nanoparticles immobilized on scoria rocks. RSC. Adv. 2015, 5, 75474-82.
20. Ahmad, I.; Zou, Y.; Yan, J.; et al. Semiconductor photocatalysts: a critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv. Colloid. Interface. Sci. 2023, 311, 102830.
21. Bahadoran, A.; De Lile, J. R.; Masudy-Panah, S.; et al. Photocatalytic materials obtained from E-waste recycling: review, techniques, critique, and update. JMMP 2022, 6, 69.
22. Chen, Y.; Xu, M.; Wen, J.; et al. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 2021, 4, 618-26.
23. Hong, J.; Cho, K.; Presser, V.; Su, X. Recent advances in wastewater treatment using semiconductor photocatalysts. Curr. Opin. Green. Sustain. Chem. 2022, 36, 100644.
24. Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano. Energy. 2018, 53, 296-336.
25. Wang, J.; Cao, C.; Zhang, Y.; Zhang, Y.; Zhu, L. Underneath mechanisms into the super effective degradation of PFOA by BiOF nanosheets with tunable oxygen vacancies on exposed (101) facets. Appl. Catal. B. Environ. 2021, 286, 119911.
26. Wu, Y.; Li, Y.; Fang, C.; Li, C. Highly efficient degradation of perfluorooctanoic acid over a MnOx-modified oxygen-vacancy-rich In2O3 photocatalyst. ChemCatChem 2019, 11, 2297-303.
27. Núñez-Salas, R. E.; Hernández-Ramírez, A.; Hinojosa-Reyes, L.; Guzmán-Mar, J. L.; Villanueva-Rodríguez, M.; Maya-Treviño, M. D. L. Cyanide degradation in aqueous solution by heterogeneous photocatalysis using boron-doped zinc oxide. Catal. Today. 2019, 328, 202-9.
28. Aboutaleb, W. A.; El-Salamony, R. A. Effect of Fe2O3-CeO2 nanocomposite synthesis method on the Congo red dye photodegradation under visible light irradiation. Mater. Chem. Phys. 2019, 236, 121724.
29. Shabbir, A.; Sardar, S.; Mumtaz, A. Mechanistic investigations of emerging type-II, Z-scheme and S-scheme heterojunctions for photocatalytic applications - a review. J. Alloys. Compd. 2024, 1003, 175683.
30. Abbood, N. S.; Ali, N. S.; Khader, E. H.; Majdi, H. S.; Albayati, T. M.; Saady, N. M. C. Photocatalytic degradation of cefotaxime pharmaceutical compounds onto a modified nanocatalyst. Res. Chem. Intermed. 2023, 49, 43-56.
31. He, X.; Kai, T.; Ding, P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environ. Chem. Lett. 2021, 19, 4563-601.
32. Morshedy, A. S.; El-Fawal, E. M.; Zaki, T.; El-Zahhar, A. A.; Alghamdi, M. M.; El Naggar, A. M. A review on heterogeneous photocatalytic materials: mechanism, perspectives, and environmental and energy sustainability applications. Inorg. Chem. Commun. 2024, 163, 112307.
33. Khurram, R.; Wang, Z.; Ehsan, M. F. α-Fe2O3-based nanocomposites: synthesis, characterization, and photocatalytic response towards wastewater treatment. Environ. Sci. Pollut. Res. Int. 2021, 28, 17697-711.
34. Kumar, A.; Khan, M.; He, J.; Lo, I. M. C. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: a critical review. Water. Res. 2020, 170, 115356.
35. Paul, T.; Das, D.; Das, B. K.; Sarkar, S.; Maiti, S.; Chattopadhyay, K. K. CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst. J. Hazard. Mater. 2019, 380, 120855.
36. Cui, H.; Dong, S.; Wang, K.; Luan, M.; Huang, T. Synthesis of a novel Type-II In2S3/Bi2MoO6 heterojunction photocatalyst: excellent photocatalytic performance and degradation mechanism for Rhodamine B. Sep. Purif. Technol. 2021, 255, 117758.
37. Opoku, F.; Govender, K. K.; van Sittert, C. G. C. E.; Govender, P. P. Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Adv. Sustain. Syst. 2017, 1, 1700006.
38. Wen, X.; Shen, C.; Fei, Z.; et al. Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem. Eng. J. 2020, 383, 123083.
39. Li, J.; Chen, J.; Fang, H.; Guo, X.; Rui, Z. Plasmonic metal bridge leading Type III heterojunctions to robust Type B photothermocatalysts. Ind. Eng. Chem. Res. 2021, 60, 8420-9.
40. Jiang, X.; Wang, Z.; Zhang, M.; et al. A novel direct Z-scheme heterojunction BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst degradation activity under visible light irradiation. J. Alloys. Compd. 2022, 912, 165185.
41. Luo, J.; Ning, X.; Zhan, L.; Zhou, X. Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation. Sep. Purif. Technol. 2021, 255, 117691.
42. Chen, M.; Guo, C.; Hou, S.; et al. A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation. Appl. Catal. B. Environ. 2020, 266, 118614.
43. Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today. 2018, 21, 1042-63.
44. Beshkar, F.; Al-Nayili, A.; Amiri, O.; Salavati-Niasari, M.; Mousavi-Kamazani, M. Visible light-induced degradation of amoxicillin antibiotic by novel CuI/FePO4 p-n heterojunction photocatalyst and photodegradation mechanism. J. Alloys. Compd. 2022, 892, 162176.
45. Hasija, V.; Kumar, A.; Sudhaik, A.; et al. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review. Environ. Chem. Lett. 2021, 19, 2941-66.
46. Fan, H.; Zhou, H.; Li, W.; Gu, S.; Zhou, G. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity. Appl. Surf. Sci. 2020, 504, 144351.
47. Di Bartolomeo, A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1-58.
48. Kumari, P.; Bahadur, N.; Kong, L.; O’dell, L. A.; Merenda, A.; Dumée, L. F. Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance - a review. Mater. Adv. 2022, 3, 2309-23.
49. Graimed, B. H.; Okab, A. A.; Jabbar, Z. H.; Issa, M. A.; Ammar, S. H. Highly stable β-Bi2O3/Ag decorated nanosilica as an efficient Schottky heterojunction for ciprofloxacin photodegradation in wastewater under LED illumination. Mater. Sci. Semicond. Process. 2022, 156, 107303.
50. Manassero, A.; Satuf, M. L.; Alfano, O. M. Photocatalytic reactors with suspended and immobilized TiO2: comparative efficiency evaluation. Chem. Eng. J. 2017, 326, 29-36.
51. Joseph, A.; Vijayanandan, A. Review on support materials used for immobilization of nano-photocatalysts for water treatment applications. Inorg. Chim. Acta. 2023, 545, 121284.
52. Goutham, R.; Badri Narayan, R.; Srikanth, B.; Gopinath, K. P. Supporting materials for immobilisation of nano-photocatalysts. In: Inamuddin, Sharma G, Kumar A, Lichtfouse E, Asiri AM, editors. Nanophotocatalysis and environmental applications. Cham: Springer International Publishing; 2019. pp. 49-82.
53. Robert, D.; Keller, V.; Keller, N. Immobilization of a semiconductor photocatalyst on solid supports: methods, materials, and applications. In: Pichat P, editor. Photocatalysis and water purification. Wiley; 2013. pp. 145-78.
54. Karavasilis, M. V.; Tsakiroglou, C. D. Use of immobilized zinc oxide photocatalysts for wastewater treatment: application to methylene blue degradation. Can. J. Chem. Eng. 2022, 100, 893-910.
55. Chairungsri, W.; Subkomkaew, A.; Kijjanapanich, P.; Chimupala, Y. Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate. Chemosphere 2022, 286, 131762.
56. Yusuf, A. O.; Mohamed, G. H.; Al-Sakkaf, R.; et al. Photocatalytic degradation of diclofenac amide in a fixed-bed reactor using TiO2/β-Bi2O3: process optimization and stability analysis. J. Photochem. Photobiol. A. Chem. 2024, 450, 115470.
57. Wetchakun, K.; Wetchakun, N.; Sakulsermsuk, S. An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. J. Ind. Eng. Chem. 2019, 71, 19-49.
58. Al-Tameemi, H. M.; Sukkar, K. A.; Abbar, A. H.; Kuraimid, Z. K. Optimization of photocatalytic process with SnO2 catalyst for COD reduction from petroleum refinery wastewater using a slurry bubble photoreactor. Case. Stud. Chem. Environ. Eng. 2024, 9, 100687.
59. Shokry, F.; El-Gedawy, M.; Nosier, S.; Abdel-Aziz, M. Optimizing photocatalytic degradation of methyl violet dye in a recirculating slurry-type reactor. Results. Chem. 2025, 13, 101980.
60. Ng, K. H.; Chen, K.; Cheng, C. K.; Vo, D. N. Elimination of energy-consuming mechanical stirring: development of auto-suspending ZnO-based photocatalyst for organic wastewater treatment. J. Hazard. Mater. 2021, 409, 124532.
61. Zheng, X.; Shen, Z.; Shi, L.; Cheng, R.; Yuan, D. Photocatalytic membrane reactors (PMRs) in water treatment: configurations and influencing factors. Catalysts 2017, 7, 224.
62. Khader, E. H.; Mohammed, T. J.; Albayati, T. M.; et al. Current trends for wastewater treatment technologies with typical configurations of photocatalytic membrane reactor hybrid systems: a review. Chem. Eng. Process. 2023, 192, 109503.
63. Samuel, O.; Othman, M. H. D.; Kamaludin, R.; et al. Treatment of oily wastewater using photocatalytic membrane reactors: a critical review. J. Environ. Chem. Eng. 2022, 10, 108539.
64. Espíndola, J. C.; Cristóvão, R. O.; Mendes, A.; Boaventura, R. A.; Vilar, V. J. Photocatalytic membrane reactor performance towards oxytetracycline removal from synthetic and real matrices: suspended vs immobilized TiO2-P25. Chem. Eng. J. 2019, 378, 122114.
65. Nguyen, V.; Tran, Q. B.; Nguyen, X. C.; et al. Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater. Process. Saf. Environ. Prot. 2020, 142, 229-37.
66. Janssens, R.; Hainaut, R.; Gillard, J.; Dailly, H.; Luis, P. Performance of a slurry photocatalytic membrane reactor for the treatment of real secondary wastewater effluent polluted by anticancer drugs. Ind. Eng. Chem. Res. 2021, 60, 2223-31.
67. Amadelli, R.; Samiolo, L. Photoelectrocatalysis for water purification. In: Pichat P, editor. Photocatalysis and water purification. Wiley; 2013. pp. 241-70.
68. Marinho, B. A.; Suhadolnik, L.; Likozar, B.; Huš, M.; Marinko, Ž.; Čeh, M. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: analytical methods, mechanisms, simulations, catalysts and reactors. J. Clean. Prod. 2022, 343, 131061.
69. Suhadolnik, L.; Pohar, A.; Novak, U.; Likozar, B.; Mihelič, A.; Čeh, M. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: batch, microreactor and scaled-up operation. J. Ind. Eng. Chem. 2019, 72, 178-88.
70. Meng, H.; Liu, Y.; Liu, P.; et al. Development of a three-dimensional photoelectrocatalytic reactor packed with granular sludge carbon photoelectrocatalyst for efficient wastewater treatment. Sep. Purif. Technol. 2021, 277, 119642.
71. Boschetti, M.; Vincenzi, D.; Mangherini, G.; et al. Modular stand-alone photoelectrocatalytic reactor for emergent contaminant degradation via solar radiation. Solar. Energy. 2021, 228, 120-7.
72. Sathya, K.; Nagarajan, K.; Carlin Geor Malar, G.; Rajalakshmi, S.; Raja Lakshmi, P. A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Appl. Water. Sci. 2022, 12, 70.
73. Sacco, O.; Vaiano, V.; Sannino, D. Main parameters influencing the design of photocatalytic reactors for wastewater treatment: a mini review. J. Chem. Technol. Biotechnol. 2020, 95, 2608-18.
74. Vaiano, V.; Sacco, O.; Pisano, D.; Sannino, D.; Ciambelli, P. From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem. Eng. Sci. 2015, 137, 152-60.
75. Enesca, A. The influence of photocatalytic reactors design and operating parameters on the wastewater organic pollutants removal - a mini-review. Catalysts 2021, 11, 556.
76. Shaghaghi, M.; Sargazi, H.; Bazargan, A.; Bellardita, M. Photocatalytic reactor types and configurations. In: Bazargan A, editor. Photocatalytic water and wastewater treatment. IWA Publishing; 2022. pp. 73-110.
77. Hakki, H. K.; Sillanpää, M. Comprehensive analysis of photocatalytic and photoreactor challenges in photocatalytic wastewater treatment: a case study with ZnO photocatalyst. Mater. Sci. Semicond. Process. 2024, 181, 108592.
78. Asha, R. C.; Vishnuganth, M. A.; Remya, N.; Selvaraju, N.; Kumar, M. Livestock wastewater treatment in batch and continuous photocatalytic systems: performance and economic analyses. Water. Air. Soil. Pollut. 2015, 226, 2396.
79. Wang, X.; Jia, J.; Wang, Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017, 315, 274-82.
80. Alam, M. M.; Bin Mukhlish, M. Z.; Uddin, S.; et al. Photocatalytic degradation of reactive yellow in batch and continuous photoreactor using titanium dioxide. J. Sci. Res. 2012, 4, 665-74.
81. Balarak, D.; Mostafapour, F. K. Photocatalytic degradation of amoxicillin using UV/synthesized NiO from pharmaceutical wastewater. Indones. J. Chem. 2019, 19, 211.
82. Krishnan, T.; Wan, Mansor., W. S. Photocatalytic degradation of dyes by TiO2 process in batch photoreactor. Lett. Appl. NanoBioSci. 2020, 9, 1502-12.
83. Colombo, E.; Ashokkumar, M. Comparison of the photocatalytic efficiencies of continuous stirred tank reactor (CSTR) and batch systems using a dispersed micron sized photocatalyst. RSC. Adv. 2017, 7, 48222-9.
84. Yang, H.; Lee, Y. J.; Park, S. J.; Lee, C. G. Exploring the viability of a floating photocatalyst in a continuous stirred tank reactor system for continuous water treatment. Environ. Sci. Pollut. Res. Int. 2023, 30, 114582-90.
85. Tang, C.; Chen, V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water. Res. 2004, 38, 2775-81.
86. Ma, X.; Chen, X.; Yang, Y.; et al. Full-scale integrated skid-mounted plug flow photocatalytic reactor: treatment of hospital wastewater. J. Environ. Chem. Eng. 2024, 12, 111596.
87. Adishkumar, S.; Kanmani, S.; Rajesh Banu, J.; Tae Yeom, I. Evaluation of bench-scale solar photocatalytic reactors for degradation of phenolic wastewaters. Desalination. Water. Treat. 2016, 57, 16862-70.
88. Pedina, S.; Jena, H. M. Hydrodynamics of a three-phase annular fluidized bed photocatalytic reactor (TAFBPR) with TiO2/CSGAC-experimental and statistical analysis. Powder. Technol. 2024, 445, 120124.
89. Kumar Jaiswal, V.; Dutta Gupta, A.; Verma, V.; Sharan Singh, R. Degradation of p-cresol in the presence of UV light driven in an integrated system containing photocatalytic and packed bed biofilm reactor. Bioresour. Technol. 2023, 387, 129706.
90. Wang, S.; Fu, X.; Wang, J.; Yan, M.; Xu, M.; Xu, C. Photocatalytic degradation of rhodamine B over Z-scheme photocatalyst BiFeO3/3DOM-TiO2-x in a fixed-bed reactor. Mater. Sci. Semicond. Process. 2024, 173, 108108.
91. Alalm, M. G.; Djellabi, R.; Meroni, D.; Pirola, C.; Bianchi, C. L.; Boffito, D. C. Toward scaling-up photocatalytic process for multiphase environmental applications. Catalysts 2021, 11, 562.
92. Kahveci, O.; Akkaya, A.; Sarıkaya, E. K.; et al. Construction of unary and ternary ZnO–CuO–CdO composite thin films and comprehensive analysis of their optical, electrical, and photocatalytic performance. J. Alloys. Compd. 2024, 997, 174827.
93. Molinari, R.; Severino, A.; Lavorato, C.; Argurio, P. Which configuration of photocatalytic membrane reactors has a major potential to be used at an industrial level in tertiary sewage wastewater treatment? Catalysts 2023, 13, 1204.
94. Janssens, R.; Mandal, M. K.; Dubey, K. K.; Luis, P. Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: towards cytostatic drug elimination. Sci. Total. Environ. 2017, 599-600, 612-26.
95. Rani, C. N.; Karthikeyan, S.; Prince Arockia Doss, S. Photocatalytic ultrafiltration membrane reactors in water and wastewater treatment - a review. Chem. Eng. Process. 2021, 165, 108445.
96. Golshenas, A.; Sadeghian, Z.; Ashrafizadeh, S. N. Performance evaluation of a ceramic-based photocatalytic membrane reactor for treatment of oily wastewater. J. Water. Process. Eng. 2020, 36, 101186.
97. Deepracha, S.; Atfane, L.; Ayral, A.; Ogawa, M. Simple and efficient method for functionalizing photocatalytic ceramic membranes and assessment of its applicability for wastewater treatment in up-scalable membrane reactors. Sep. Purif. Technol. 2021, 262, 118307.
98. Gomaa, H. G.; Zhou, W.; Zhu, J. Treatment of oily wastewater using submerged photocatalytic membrane reactor. Particuology 2024, 94, 252-60.
99. Kubiak, A.; Cegłowski, M. Developing a novel continuous-flow cascade photocatalytic system for effective sulfamethoxazole elimination from hospital wastewater. Chem. Eng. J. 2024, 495, 153518.
100. Zeghioud, H.; Kamagate, M.; Coulibaly, L. S.; Rtimi, S.; Assadi, A. A. Photocatalytic degradation of binary and ternary mixtures of antibiotics: reactive species investigation in pilot scale. Chem. Eng. Res. Des. 2019, 144, 300-9.
101. Buehler, D.; Antenen, N.; Frei, M.; et al. Towards water and energy self-sufficiency: a closed-loop, solar-driven, low-tech laundry pilot facility (LaundReCycle) for the reuse of laundry wastewater. Circ. Econ. Sust. 2021, 1, 1037-51.
102. Kayahan, E.; Jacobs, M.; Braeken, L.; et al. Dawn of a new era in industrial photochemistry: the scale-up of micro- and mesostructured photoreactors. Beilstein. J. Org. Chem. 2020, 16, 2484-504.
103. Hakke, V.; Sonawane, S.; Anandan, S.; Sonawane, S.; Ashokkumar, M. Process intensification approach using microreactors for synthesizing nanomaterials - a critical review. Nanomaterials 2021, 11, 98.
104. Abiev, R. S. Miniaturization as one of the paths to process intensification in chemical engineering. Theor. Found. Chem. Eng. 2020, 54, 1-2.
105. Shukla, K.; Agarwalla, S.; Duraiswamy, S.; Gupta, R. K. Recent advances in heterogeneous micro-photoreactors for wastewater treatment application. Chem. Eng. Sci. 2021, 235, 116511.
106. Peralta Muniz Moreira, R.; Li Puma, G. CFD modeling of pharmaceuticals and CECs removal by UV/H2O2 process in helical microcapillary photoreactors and evaluation of OH radical rate constants. Chem. Eng. J. 2021, 415, 128833.
107. Kazemi Hakki, H.; Allahyari, S. Intensification of photocatalytic wastewater treatment using a novel continuous microcapillary photoreactor irradiated by visible LED lights. Chem. Eng. Process. 2022, 175, 108937.
108. Russo, D.; Spasiano, D.; Vaccaro, M.; et al. Direct photolysis of benzoylecgonine under UV irradiation at 254 nm in a continuous flow microcapillary array photoreactor. Chem. Eng. J. 2016, 283, 243-50.
109. Yusuf, A.; Oladipo, H.; Yildiz Ozer, L.; et al. Modelling of a recirculating photocatalytic microreactor implementing mesoporous N-TiO2 modified with graphene. Chem. Eng. J. 2020, 391, 123574.
110. Jia, L.; Jin, Y.; Li, J.; Wei, Z.; Chen, M.; Ma, J. Study on high-efficiency photocatalytic degradation of oxytetracycline based on a spiral microchannel reactor. Ind. Eng. Chem. Res. 2022, 61, 554-65.
111. Zelić, I. E.; Tomašić, V.; Gomzi, Z. Development of a new rotating photocatalytic reactor for the degradation of hazardous pollutants. Int. J. Chem. React. Eng. 2023, 21, 823-33.
112. Fallahizadeh, S.; Gholami, M.; Rahimi, M. R.; et al. The spinning disc reactor for photocatalytic degradation: a systematic review. Heliyon 2024, 10, e32440.
113. Fallahizadeh, S.; Rahimi, M. R.; Gholami, M.; Esrafili, A.; Farzadkia, M.; Kermani, M. Novel nanostructure approach for antibiotic decomposition in a spinning disc photocatalytic reactor. Sci. Rep. 2024, 14, 10566.
114. Ghasemi, A. H.; Zoqi, M. J.; Zanganeh Ranjbar, P. Enhanced photocatalytic degradation of methylene blue using a novel counter-rotating disc reactor. Front. Chem. 2024, 12, 1335180.
115. Yossry, A.; El-Ashtoukhy, E.; Abdel-Aziz, M.; Zatout, A.; Sedahmed, G. Intensification of the rate of diffusion-controlled reactions involved in wastewater treatment by using a rotating array of vertical cylinders reactor. J. Environ. Chem. Eng. 2022, 10, 107330.
116. Borah, P.; Kumar, M.; Devi, P. Chapter 2 - Types of inorganic pollutants: metals/metalloids, acids, and organic forms. In: Inorganic pollutants in water. Elsevier; 2020. pp. 17-31.
117. Zaynab, M.; Al-Yahyai, R.; Ameen, A.; et al. Health and environmental effects of heavy metals. J. King. Saud. Univ. Sci. 2022, 34, 101653.
118. Tytła, M. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in poland-case study. Int. J. Environ. Res. Public. Health. 2019, 16, 2430.
119. Sable, H.; Kumar, V.; Singh, V.; Rustagi, S.; Chahal, S.; Chaudhary, V. Strategically engineering advanced nanomaterials for heavy-metal remediation from wastewater. Coord. Chem. Rev. 2024, 518, 216079.
120. Skliri, E.; Vamvasakis, I.; Papadas, I. T.; Choulis, S. A.; Armatas, G. S. Mesoporous composite networks of linked MnFe2O4 and ZnFe2O4 nanoparticles as efficient photocatalysts for the reduction of Cr(VI). Catalysts 2021, 11, 199.
121. Li, Y.; Wang, S.; Guo, H.; et al. Synchronous removal of oxytetracycline and Cr(VI) in Fenton-like photocatalysis process driven by MnFe2O4/g-C3N4: performance and mechanisms. Chemosphere 2024, 352, 141371.
122. Fatima, T.; Husain, S.; Khanuja, M. Superior photocatalytic and electrochemical activity of novel WS2/PANI nanocomposite for the degradation and detection of pollutants: antibiotic, heavy metal ions, and dyes. Chem. Eng. J. Adv. 2022, 12, 100373.
123. Qiu, F.; Pan, Y.; Tian, Y.; et al. The construction of large-aperture Schottky heterostructures and the study of the reduction properties of heavy metal ions under natural light. Mater. Design. 2025, 250, 113579.
124. Mohamed, R. M.; Ismail, A. A. Photocatalytic reduction and removal of mercury ions over mesoporous CuO/ZnO S-scheme heterojunction photocatalyst. Ceram. Int. 2021, 47, 9659-67.
125. Abbasi, H.; Salimi, F.; Golmohammadi, F. Removal of cadmium from aqueous solution by nano composites of bentonite/TiO2 and bentonite/ZnO using photocatalysis adsorption process. Silicon 2020, 12, 2721-31.
126. Sethy, N. K.; Arif, Z.; Mishra, P. K.; Kumar, P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green. Process. Synth. 2020, 9, 171-81.
127. Liu, F.; Zhang, W.; Tao, L.; Hao, B.; Zhang, J. Simultaneous photocatalytic redox removal of chromium(VI) and arsenic(III) by hydrothermal carbon-sphere@nano-Fe3O4. Environ. Sci. Nano. 2019, 6, 937-47.
128. Le, A. T.; Pung, S. Y.; Sreekantan, S.; Matsuda, A.; Huynh, D. P. Mechanisms of removal of heavy metal ions by ZnO particles. Heliyon 2019, 5, e01440.
129. Al-Sherbini, A. A.; Ghannam, H. E. A.; El-Ghanam, G. M. A.; El-Ella, A. A.; Youssef, A. M. Utilization of chitosan/Ag bionanocomposites as eco-friendly photocatalytic reactor for Bactericidal effect and heavy metals removal. Heliyon 2019, 5, e01980.
130. Zhang, P.; Li, H.; Wang, Y.; Song, J.; Huang, J.; Li, P. Highly efficient uranium (VI) remove from aqueous solution using nano-TiO2-anchored polymerized dopamine-wrapped magnetic photocatalyst. J. Clean. Prod. 2023, 425, 138796.
131. Dai, Z.; Zhen, Y.; Sun, Y.; Li, L.; Ding, D. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem. Eng. J. 2021, 415, 129002.
132. Liang, P.; Yuan, L.; Deng, H.; et al. Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B. Environ. 2020, 267, 118688.
133. Li, Z.; Zhang, Z.; Dong, Z.; et al. Synthesis of MoS2/P-g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of uranium (VI). J. Solid. State. Chem. 2021, 302, 122305.
134. Wang, J.; Wang, Y.; Wang, W.; et al. Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI). Chem. Eng. J. 2020, 383, 123193.
135. Zhang, X.; Guo, R.; Wang, H.; Zhang, Z.; Chen, Y.; Zhang, Y. Enhanced synergistic removal of tetracycline and uranium in wastewater using Defective-Enriched S-scheme hollow dodecahedron K3PW12O40@WS2 heterojunction. Chem. Eng. J. 2024, 495, 153322.
136. Xu, X.; Feng, L.; Cao, M.; et al. Z-Scheme heterojunction Cu2(OH)3F/Bi2WO6 with improved photocatalytic activity for uranium removal from wastewater under air atmosphere. Sep. Purif. Technol. 2024, 350, 128012.
137. Ye, H.; Wen, R.; Wu, M.; et al. Tailor-Made Homo/Heterojunction engineering of CdS@Prussian blue via One-Pot kinetic regulation for photoreduction of uranium (VI) from radioactive wastewater. Chem. Eng. J. 2024, 485, 149731.
138. Lu, S.; Yin, Y.; Bao, J.; et al. CdS@NiCr-LDH Z-scheme heterojunction with high adsorption–photocatalysis for uranium(VI) removal without any sacrificial agent. J. Environ. Chem. Eng. 2024, 12, 112989.
139. Wu, P.; Yin, X.; Zhao, Y.; et al. Porphyrin-based hydrogen-bonded organic framework for visible light driven photocatalytic removal of U(VI) from real low-level radioactive wastewater. J. Hazard. Mater. 2023, 459, 132179.
140. Chen, L.; Chen, B.; Kang, J.; et al. The synthesis of a novel conjugated microporous polymer and application on photocatalytic removal of uranium(VI) from wastewater under visible light. Chem. Eng. J. 2022, 431, 133222.
141. Chakraborty, A. K.; Akter, S.; Ganguli, S.; Haque, M. A.; Nur, A. S.; Sabur, M. A. Design of FeWO4@N-TiO2 nanocomposite and its enhanced photocatalytic activity in decomposing methylene blue and phenol under visible light. Environ. Technol. Innov. 2024, 33, 103536.
142. He, Q.; Si, S.; Song, L.; et al. Refractory petrochemical wastewater treatment by K2S2O8 assisted photocatalysis. Saudi. J. Biol. Sci. 2019, 26, 849-53.
143. Alhajeri, N. S.; Tawfik, A.; Nasr, M.; Osman, A. I. Artificial intelligence-enabled optimization of Fe/Zn@biochar photocatalyst for 2,6-dichlorophenol removal from petrochemical wastewater: a techno-economic perspective. Chemosphere 2024, 352, 141476.
144. Ramos-Huerta, L.; Aguilar-Martínez, O.; Piña-Pérez, Y.; et al. Effect of calcination temperature on CeO2-based catalysts with enhanced photocatalytic degradation of phenol under UV light. Mater. Sci. Semicond. Process. 2025, 187, 109123.
145. Alanazi, M. Q.; Virk, P.; Alterary, S. S.; et al. Effect of potential microplastics in sewage effluent on Nile Tilapia and photocatalytic remediation with zinc oxide nanoparticles. Environ. Pollut. 2023, 332, 121946.
146. Martín-González, M.; Fernández-Rodríguez, C.; González-Díaz, O.; Susial, P.; Doña-Rodríguez, J. Open-cell ceramic foams covered with TiO2 for the photocatalytic treatment of agro-industrial wastewaters containing imazalil at semi-pilot scale. J. Taiwan. Inst. Chem. Eng. 2023, 147, 104902.
147. Khasawneh, O. F. S.; Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process. Saf. Environ. Prot. 2021, 150, 532-56.
148. Cassini, A.; Högberg, L. D.; Plachouras, D.; et al; Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet. Infect. Dis. 2019, 19, 56-66.
149. Konstas, P.; Kosma, C.; Konstantinou, I.; Albanis, T. Photocatalytic treatment of pharmaceuticals in real hospital wastewaters for effluent quality amelioration. Water 2019, 11, 2165.
150. Ariza-Tarazona, M. C.; Villarreal-Chiu, J. F.; Barbieri, V.; Siligardi, C.; Cedillo-González, E. I. New strategy for microplastic degradation: green photocatalysis using a protein-based porous N-TiO2 semiconductor. Ceram. Int. 2019, 45, 9618-24.
151. Jeyavani, J.; Al-Ghanim, K. A.; Govindarajan, M.; Malafaia, G.; Vaseeharan, B. A convenient strategy for mitigating microplastics in wastewater treatment using natural light and ZnO nanoparticles as photocatalysts: a mechanistic study. J. Contam. Hydrol. 2024, 267, 104436.
152. Sanchez, J. M.; Oliva, J.; Gomez-Solis, C.; et al. High removal of PS and PET microplastics from tap water by using Fe2O3 porous microparticles and photothermal irradiation with NIR light. Chemosphere 2024, 367, 143538.
153. Chokejaroenrat, C.; Watcharatharapong, T.; T-Thienprasert, J.; et al. Decomposition of microplastics using copper oxide/bismuth vanadate-based photocatalysts: insight mechanisms and environmental impacts. Mar. Pollut. Bull. 2024, 201, 116205.
154. Wu, F.; Yu, H.; Chang, F.; et al. Fabrication of a C3N4/Bi12O17Cl2 heterojunction photocatalytic membrane applied for pharmaceutical and microplastic treatment. Sep. Purif. Technol. 2025, 364, 132394.
155. Gu, M.; Duan, L.; Zhang, Z.; et al. Multi-charge bridge transfer guiding design of photocatalyst with oxygen defects for effective degradation of PFAS in fluoropolymer production wastewater. Chem. Eng. J. 2025, 505, 159124.
156. Wen, Y.; Rentería-Gómez, Á.; Day, G. S.; et al. Integrated photocatalytic reduction and oxidation of perfluorooctanoic acid by metal-organic frameworks: key insights into the degradation mechanisms. J. Am. Chem. Soc. 2022, 144, 11840-50.
157. Gates, K.; Rai, S.; Pramanik, A.; et al. Insight into the photocatalytic degradation mechanism for “Forever Chemicals” PFNA by reduced graphene oxide/WO3 nanoflower heterostructures. ACS. Omega. 2025, 10, 10675-84.
158. Devi, A. P.; Padhi, D. K.; Madhual, A.; Mishra, P. M.; Behera, A. K. Plant biomass driven synthesis of gAu/RGO nanocomposite towards photocatalytic degradation of phenolic compounds in wastewater. J. Environ. Chem. Eng. 2023, 11, 110161.
159. Abdelfattah, I.; Ismail, A. A. Reduction of COD concentration and complete removal of phenol in industrial wastewater utilizing mesoporous TiO2 nanoparticles under UVA illumination. Opt. Mater. 2023, 145, 114410.
160. Mahboob, I.; Shafique, S.; Shafiq, I.; et al. Mesoporous LaVO4/MCM-48 nanocomposite with visible-light-driven photocatalytic degradation of phenol in wastewater. Environ. Res. 2023, 218, 114983.
161. Safaralizadeh, E.; Mahjoub, A.; Janitabardarzi, S. Visible light-induced degradation of phenolic contaminants utilizing nanoscale TiO2 and ZnO impregnated with SR 7B (SR) dye as advanced photocatalytic systems. Ceram. Int. 2025, 51, 1958-69.
162. Rashtizadeh, A.; Delnavaz, M.; Samadi, A.; Heidarzadeh, N. Photodegradation of POPs-containing wastewater using sunlight driven Ce-doped-ZnO/g-C3N4 photocatalyst: optimization, and cost-efficiency analysis. Chem. Phys. Lett. 2023, 811, 140253.
163. Liang, Y.; Wang, B.; Li, S.; et al. Enhanced photocatalysis using metal-organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water. J. Fuel. Chem. Technol. 2024, 52, 607-18.
164. Brindhadevi, K.; Kim, T. P.; Alharbi, S. A.; Ramesh, M. D.; Lee, J.; Bharathi, D. Enhanced photocatalytic degradation of polycyclic aromatic hydrocarbons (PAHs) using NiO nanoparticles. Environ. Res. 2024, 252, 118454.
165. Amakiri, K. T.; Angelis-Dimakis, A.; Chatzisymeon, E. Photocatalytic degradation of phenol and polycyclic aromatic hydrocarbons in water by novel acid soluble collagen-polyvinylpyrrolidone polymer embedded in nitrogen-TiO2. Chem. Phys. 2025, 589, 112485.
166. Ghugal, S. G.; Vidyasagar, D.; Tadi, K. K.; et al. Optimized photocatalytic performance of ZnS-SnO2 heterostructures for visible light driven mineralization of Acid violet 7 dye and inactivation of bacteria. Mater. Sci. Semicond. Process. 2023, 165, 107657.
167. Muñoz-Flores, P.; Poon, P. S.; Ania, C. O.; Matos, J. Performance of a C-containing Cu-based photocatalyst for the degradation of tartrazine: comparison of performance in a slurry and CPC photoreactor under artificial and natural solar light. J. Colloid. Interface. Sci. 2022, 623, 646-59.
168. Diego-Lopez, A.; Cabezuelo, O.; Vidal-Moya, A.; Marin, M. L.; Bosca, F. Synthesis and mechanistic insights of SiO2@WO3@Fe3O4 as a novel supported photocatalyst for wastewater remediation under visible light. Appl. Mater. Today. 2023, 33, 101879.
169. Alzahrani, F. M. A.; Anwar, M.; Farooq, A.; Alrowaili, Z.; Al-Buriahi, M.; Warsi, M. F. A new BiOCl–ZnFe2O4/CNTs ternary composite for remarkable photocatalytic degradation studies of a herbicide and a diazo dye. Opt. Mater. 2024, 148, 114876.
170. Fiorenza, R.; Di Mauro, A.; Cantarella, M.; Privitera, V.; Impellizzeri, G. Selective photodegradation of 2,4-D pesticide from water by molecularly imprinted TiO2. J. Photochem. Photobiol. A. Chem. 2019, 380, 111872.
171. Fenoll, J.; Garrido, I.; Flores, P.; et al. Implementation of a new modular facility to detoxify agro-wastewater polluted with neonicotinoid insecticides in farms by solar photocatalysis. Energy 2019, 175, 722-9.
172. Olatunde, O. C.; Onwudiwe, D. C. A comparative study of the effect of graphene oxide, graphitic carbon nitride, and their composite on the photocatalytic activity of Cu3SnS4. Catalysts 2022, 12, 14.
173. Vignati, D.; Lofrano, G.; Libralato, G.; et al. Photocatalytic ZnO-assisted degradation of spiramycin in urban wastewater: degradation kinetics and toxicity. Water 2021, 13, 1051.
174. Xu, Y.; Yang, X.; Liang, C.; Peng, L. Efficient adsorption and photocatalytic degradation of pharmaceutical compounds by Bi24O31Br10: mechanism, toxicity assessment, and degradation pathways. J. Water. Process. Eng. 2025, 71, 107233.
175. Antonopoulou, M.; Papadaki, M.; Rapti, I.; Konstantinou, I. Photocatalytic degradation of pharmaceutical amisulpride using g-C3N4 catalyst and UV-A irradiation. Catalysts 2023, 13, 226.
176. Mohamed, Z. H.; Riyad, Y. M.; Hendawy, H. A.; Abdelbary, H. M. H. Enhanced photocatalytic degradation of the antidepressant sertraline in aqueous solutions by zinc oxide nanoparticles. Water 2023, 15, 2074.
177. Evgenidou, E.; Rapti, A.; Koronaiou, L.; Petromelidou, S.; Anagnostopoulou, K.; Lambropoulou, D. Photocatalytic degradation of the antidepressant drug bupropion. Performance, water matrix effect and identification of transformation products. Sustain. Chem. Environ. 2023, 3, 100028.
178. Chatzimpaloglou, A.; Christophoridis, C.; Nika, M. C.; et al. Degradation of antineoplastic drug etoposide in aqueous environment by photolysis and photocatalysis. Identification of photocatalytic transformation products and toxicity assessment. Chem. Eng. J. 2022, 431, 133969.
179. Berbentea, A.; Ciopec, M.; Duteanu, N.; et al. Advanced photocatalytic degradation of cytarabine from pharmaceutical wastewaters. Toxics 2024, 12, 405.
180. Swedha, M.; Alatar, A. A.; Okla, M. K.; et al. Graphitic carbon nitride embedded Ni3(VO4)2/ZnCr2O4 Z-scheme photocatalyst for efficient degradation of p-chlorophenol and 5-fluorouracil, and genotoxic evaluation in Allium cepa. J. Ind. Eng. Chem. 2022, 112, 244-57.
181. Yasir, M.; Ali, H.; Masar, M.; et al. Design and fabrication of TiO2/Nd polyurethane nanofibers based photoreactor: a continuous flow kinetics study for Estriol degradation and mechanism. J. Water. Process. Eng. 2023, 56, 104271.
182. Ali, H.; Yasir, M.; Ngwabebhoh, F. A.; et al. Boosting photocatalytic degradation of estrone hormone by silica-supported g-C3N4/WO3 using response surface methodology coupled with Box-Behnken design. J. Photochem. Photobiol. A. Chem. 2023, 441, 114733.
183. Ruta, V.; Sivo, A.; Bonetti, L.; Bajada, M. A.; Vilé, G. Structural effects of metal single-atom catalysts for enhanced photocatalytic degradation of gemfibrozil. ACS. Appl. Nano. Mater. 2022, 5, 14520-8.
184. Mar-Ortiz, A. F.; Salazar-Rábago, J. J.; Sánchez-Polo, M.; Rozalen, M.; Cerino-Córdova, F. J.; Loredo-Cancino, M. Photodegradation of antihistamine chlorpheniramine using a novel iron-incorporated carbon material and solar radiation. Environ. Sci. Water. Res. Technol. 2020, 6, 2607-18.
185. Sehrawat, P.; Raj, A.; Singh, S.; Mehta, S. K.; Bhinder, S. S.; Kansal, S. K. Solar-driven S-scheme Zn0.5Cd0.5S/MoS2 composite for photocatalytic ketorolac tromethamine degradation and hydrogen generation coupled with benzyl alcohol oxidation. Int. J. Hydrogen. Energy. 2024, 62, 17-30.
186. Alomar, M. S.; Bakather, O. Y.; Zouli, N.; et al. Solar-driven purification: removing pharmaceutical contaminants from water using carbon-doped NASICON photocatalyst. Mater. Sci. Semicond. Process. 2025, 185, 108901.
187. Galaburda, M.; Nazarkovsky, M.; Osipiuk, K.; et al. Enhanced photocatalytic degradation of antiviral drugs lopinavir and ritonavir by Ni doped ZnO/SiO2 nanocomposites. J. Environ. Chem. Eng. 2024, 12, 114525.
188. Hojamberdiev, M.; Czech, B.; Wasilewska, A.; et al. Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. J. Hazard. Mater. 2022, 429, 128300.
189. Kowalczyk, A.; Zgardzińska, B.; Osipiuk, K.; et al. The visible-light-driven activity of biochar-doped TiO2 photocatalysts in β-blockers removal from water. Materials 2023, 16, 1094.
190. Sarabyar, S.; Farahbakhsh, A.; Tahmasebi, H. A.; Mahmoodzadeh, Vaziri., B.; Khosroyar, S. Enhancing photocatalytic degradation of beta-blocker drugs using TiO2 NPs/zeolite and ZnO NPs/zeolite as photocatalysts: optimization and kinetic investigations. Sci. Rep. 2024, 14, 27390.
191. Luo, Y.; Feng, L.; Liu, Y.; Zhang, L. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Sep. Purif. Technol. 2020, 238, 116405.
192. Majumder, A.; Gupta, A. K.; Ghosal, P. S.; Varma, M. A review on hospital wastewater treatment: a special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 2021, 9, 104812.
193. Zhang, G.; Li, W.; Chen, S.; Zhou, W.; Chen, J. Problems of conventional disinfection and new sterilization methods for antibiotic resistance control. Chemosphere 2020, 254, 126831.
194. Zhan, J.; Xu, S.; Zhu, Y.; et al. Potential pathogenic microorganisms in rural wastewater treatment process: succession characteristics, concentration variation, source exploration, and risk assessment. Water. Res. 2024, 254, 121359.
195. Chen, P.; Yu, X.; Zhang, J. Photocatalysis enhanced constructed wetlands effectively remove antibiotic resistance genes from domestic wastewater. Chemosphere 2023, 325, 138330.
196. Saravanan, A.; Kumar, P. S.; Jeevanantham, S.; Karishma, S.; Kiruthika, A. Photocatalytic disinfection of micro-organisms: mechanisms and applications. Environ. Technol. Innov. 2021, 24, 101909.
197. Baaloudj, O.; Assadi, I.; Nasrallah, N.; El Jery, A.; Khezami, L.; Assadi, A. A. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: a review. J. Water. Process. Eng. 2021, 42, 102089.
198. Channa, N.; Gadhi, T. A.; Mahar, R. B.; Chiadò, A.; Bonelli, B.; Tagliaferro, A. Combined photocatalytic degradation of pollutants and inactivation of waterborne pathogens using solar light active α/β-Bi2O3. Colloids. Surf. A. 2021, 615, 126214.
199. Jaffari, Z. H.; Lam, S.; Sin, J.; Zeng, H.; Mohamed, A. R. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination. Sep. Purif. Technol. 2020, 236, 116195.
200. Achouri, F.; Said, M. B.; Wahab, M. A.; et al. Effect of photocatalysis (TiO2/UVA) on the inactivation and inhibition of Pseudomonas aeruginosa virulence factors expression. Environ. Technol. 2021, 42, 4237-46.
201. Krishnan, S.; Zulkapli, N. S.; Din, M. F. B. M.; Majid, Z. A.; Nasrullah, M.; Sairan, F. M. Photocatalytic degradation of methylene blue dye and fungi Fusarium equiseti using titanium dioxide recovered from drinking water treatment sludge. Biomass. Conv. Bioref. 2023, 13, 10853-63.
202. Abeledo-Lameiro, M. J.; Polo-López, M. I.; Ares-Mazás, E.; Gómez-Couso, H. Inactivation of the waterborne pathogen Cryptosporidium parvum by photo-Fenton process under natural solar conditions. Appl. Catal. B. Environ. 2019, 253, 341-7.
203. Leonel, L. P.; Tonetti, A. L. Action of chlorine, peracetic acid, UV-LED radiation, and advanced oxidation process on Giardia lamblia cysts for reclaimed water production. Int. J. Environ. Sci. Technol. 2025, 22, 7783-96.
204. Baudys, M.; Sopha, H.; Hodek, J.; et al. Inactivation of influenza virus as representative of enveloped RNA viruses on photocatalytically active nanoparticle and nanotubular TiO2 surfaces. Catal. Today. 2024, 430, 114511.
205. Zhang, C.; Xiong, W.; Li, Y.; Lin, L.; Zhou, X.; Xiong, X. Continuous inactivation of human adenoviruses in water by a novel g-C3N4/WO3/biochar memory photocatalyst under light-dark cycles. J. Hazard. Mater. 2023, 442, 130013.
206. Zhang, L.; Xi, T.; Zhu, D.; et al. Adsorption-enhanced photocatalytic waterborne virus inactivation by graphite carbon nitride conjugated with covalent organic frameworks. Chem. Eng. J. 2023, 472, 144893.
207. Xie, Y.; Zhang, Z.; Zhao, Y.; Han, Y.; Liu, C.; Sun, Y. Effect of dissolved organic matter on the inactivation of bacteriophage MS2 by graphitic carbon nitride - based photocatalysis. J. Environ. Chem. Eng. 2024, 12, 112025.
208. Lee, J.; Kim, J.; Kim, S.; et al. Enhanced virucidal activity of facet-engineered Cu-doped TiO2 nanorods under visible light illumination. Water. Res. 2025, 268, 122579.
209. Cheng, R.; Kang, M.; Shen, Z. P.; Shi, L.; Zheng, X. Visible-light-driven photocatalytic inactivation of bacteriophage f2 by Cu-TiO2 nanofibers in the presence of humic acid. J. Environ. Sci. 2. 19, 77, 383-91.
210. Jacob, M. F.; Quiberoni, A. D. L.; Alfano, O. M.; Ballari, M. D. L. M.; Briggiler Marcó, M. Photocatalytic paint for phage inactivation in dairy industry: inactivation constants and efficiencies. J. Environ. Chem. Eng. 2023, 11, 110617.
211. Lin, Z.; Ye, S.; Xu, Y.; et al. Construction of a novel efficient Z-scheme BiVO4/EAQ heterojunction for the photocatalytic inactivation of antibiotic-resistant pathogens: performance and mechanism. Chem. Eng. J. 2023, 453, 139747.
212. Yang, J.; Luo, H.; Zhu, X.; et al. Copper-doped bismuth oxychloride nanosheets assembled into sphere-like morphology for improved photocatalytic inactivation of drug-resistant bacteria. Sci. Total. Environ. 2024, 912, 168916.
213. Zhong, J.; Ahmed, Y.; Carvalho, G.; et al. Simultaneous removal of micropollutants, antibiotic resistant bacteria, and antibiotic resistance genes using graphitic carbon nitride under simulated solar irradiation. Chem. Eng. J. 2022, 433, 133839.
214. Zhou, Z.; Shen, Z.; Cheng, Z.; et al. Mechanistic insights for efficient inactivation of antibiotic resistance genes: a synergistic interfacial adsorption and photocatalytic-oxidation process. Sci. Bull. 2020, 65, 2107-19.
215. Ye, S.; Xu, Y.; Huang, L.; et al. MWCNT/BiVO4 photocatalyst for inactivation performance and mechanism of Shigella flexneri HL, antibiotic-resistant pathogen. Chem. Eng. J. 2021, 424, 130415.
216. Osman, A. I.; Elgarahy, A. M.; Eltaweil, A. S.; et al. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ. Chem. Lett. 2023, 21, 1315-79.
217. Zeng, Q.; An, W.; Peng, D.; et al. Research progress in photocatalytic-coupled microbial electrochemical technology in wastewater treatment. Catalysts 2025, 15, 81.
218. Xiao, J.; Xie, Y.; Rabeah, J.; Brückner, A.; Cao, H. Visible-light photocatalytic ozonation using graphitic C3N4 catalysts: a hydroxyl radical manufacturer for wastewater treatment. Acc. Chem. Res. 2020, 53, 1024-33.
219. Rodríguez, E. M.; Rey, A.; Mena, E.; Beltrán, F. J. Application of solar photocatalytic ozonation in water treatment using supported TiO2. Appl. Catal. B. Environ. 2019, 254, 237-45.
220. Jiad, M. M.; Abbar, A. H. Petroleum refinery wastewater treatment using a novel combined electro-Fenton and photocatalytic process. J. Ind. Eng. Chem. 2024, 129, 634-55.
221. Xu, P.; Xu, H.; Zheng, D. Simultaneous electricity generation and wastewater treatment in a photocatalytic fuel cell integrating electro-Fenton process. J. Power. Sources. 2019, 421, 156-61.
222. Serrà, A.; Gómez, E.; Michler, J.; Philippe, L. Facile cost-effective fabrication of Cu@Cu2O@CuO–microalgae photocatalyst with enhanced visible light degradation of tetracycline. Chem. Eng. J. 2021, 413, 127477.
223. Li, C.; Tian, Q.; Zhang, Y.; et al. Sequential combination of photocatalysis and microalgae technology for promoting the degradation and detoxification of typical antibiotics. Water. Res. 2022, 210, 117985.
224. Lu, Z.; Xu, Y.; Peng, L.; Liang, C.; Liu, Y.; Ni, B. J. A two-stage degradation coupling photocatalysis to microalgae enhances the mineralization of enrofloxacin. Chemosphere 2022, 293, 133523.
225. de Sousa, C. M.; Cardoso, V. L.; Batista, F. R. X. A coupled photocatalytic system using niobium oxide and microalga: Cr (VI)-contaminated wastewater treatment. J. Photochem. Photobiol. A. Chem. 2023, 439, 114602.
226. Wang, G.; Cheng, H. Application of photocatalysis and sonocatalysis for treatment of organic dye wastewater and the synergistic effect of ultrasound and light. Molecules 2023, 28, 3706.
227. Schieppati, D.; Galli, F.; Peyot, M. L.; Yargeau, V.; Bianchi, C. L.; Boffito, D. C. An ultrasound-assisted photocatalytic treatment to remove an herbicidal pollutant from wastewaters. Ultrason. Sonochem. 2019, 54, 302-10.
228. Karim, A. V.; Shriwastav, A. Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: degradation kinetics and pathways. Chem. Eng. J. 2020, 392, 124853.
229. Khalegh, R.; Qaderi, F. Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/photocatalytic hybrid process. Appl. Nanosci. 2019, 9, 1869-89.
230. Chen, P.; Yu, X.; Zhang, J.; Wang, Y. New and traditional methods for antibiotic resistance genes removal: constructed wetland technology and photocatalysis technology. Front. Microbiol. 2022, 13, 1110793.
231. Nguyen, H. T. T.; Chao, H.; Chen, K. Treatment of organic matter and tetracycline in water by using constructed wetlands and photocatalysis. Appl. Sci. 2019, 9, 2680.
232. Başaran Dindaş, G.; Çalışkan, Y.; Çelebi, E. E.; Tekbaş, M.; Bektaş, N.; Yatmaz, H. C. Treatment of pharmaceutical wastewater by combination of electrocoagulation, electro-fenton and photocatalytic oxidation processes. J. Environ. Chem. Eng. 2020, 8, 103777.
233. Aldana, J. C.; Acero, J. L.; Álvarez, P. M. Membrane filtration, activated sludge and solar photocatalytic technologies for the effective treatment of table olive processing wastewater. J. Environ. Chem. Eng. 2021, 9, 105743.
234. Kusworo, T. D.; Purwanto, P.; Jos, B.; et al. Photocatalytic nanohybrid UV-light-driven PVDF/GO-NiFe@SiO2 membrane coupled with bentonite adsorption and ozonation process for a sustainable textile wastewater treatment. Process. Saf. Environ. Prot. 2024, 190, 438-57.
235. Majumder, A.; Otter, P.; Röher, D.; et al. Combination of advanced biological systems and photocatalysis for the treatment of real hospital wastewater spiked with carbamazepine: a pilot-scale study. J. Environ. Manage. 2024, 351, 119672.