REFERENCES
1. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 2008;42:5026-31.
2. Browne MA. Sources and pathways of microplastics to habitats. In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Cham: Springer; 2015. p. 229-44.
3. Zhang W, Zhang S, Wang J, et al. Microplastic pollution in the surface waters of the Bohai Sea, China. Environ Pollut 2017;231:541-8.
4. Xue B, Zhang L, Li R, et al. Underestimated microplastic pollution derived from fishery activities and “hidden” in deep sediment. Environ Sci Technol 2020;54:2210-7.
5. Zhang Q, Xu EG, Li J, et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ Sci Technol 2020;54:3740-51.
6. Fadare OO, Wan B, Guo LH, Zhao L. Microplastics from consumer plastic food containers: are we consuming it? Chemosphere 2020;253:126787.
7. Deng H, Wei R, Luo W, et al. Microplastic pollution in water and sediment in a textile industrial area. Environ Pollut 2020;258:113658.
8. Wang F, Wang B, Duan L, et al. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: a case study in Changzhou, China. Water Res 2020;182:115956.
9. Eo S, Hong SH, Song YK, Lee J, Lee J, Shim WJ. Abundance, composition, and distribution of microplastics larger than 20 μm in sand beaches of South Korea. Environ Pollut 2018;238:894-902.
10. Ziajahromi S, Neale PA, Leusch FDL. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci Technol 2016;74:2253-69.
11. Mintenig SM, Bäuerlein PS, Koelmans AA, Dekker SC, van Wezel AP. Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples†. Environ Sci Nano 2018;5:1640-9.
12. Yuan J, Ma J, Sun Y, Zhou T, Zhao Y, Yu F. Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 2020;715:136968.
13. Tian C, Lv J, Zhang W, et al. Accelerated degradation of microplastics at the liquid interface of ice crystals in frozen aqueous solutions. Angew Chem Int Ed Engl 2022;61:e202206947.
14. Auta HS, Emenike CU, Jayanthi B, Fauziah SH. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 2018;127:15-21.
15. Jeon HJ, Kim MN. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Intl Biodeterior Biodegrad 2015;103:141-6.
16. Paço A, Duarte K, da Costa JP, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 2017;586:10-5.
17. Gajendiran A, Krishnamoorthy S, Abraham J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 2016;6:52.
18. Rogers KL, Carreres-calabuig JA, Gorokhova E, Posth NR. Micro-by-micro interactions: how microorganisms influence the fate of marine microplastics. Limnol Oceanogr Lett 2020;5:18-36.
21. Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Available from: https://archive.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm. [Last accessed on 15 Sep 2023].
22. Gille ST. Decadal-scale temperature trends in the southern hemisphere ocean. J Clim 2008;21:4749-65.
23. Madhusoodanan MS, Thompson B. Decadal variability of the Arctic Ocean thermal structure. Ocean Dyn 2011;61:873-80.
24. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 2009;461:971-5.
25. Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 2012;484:502-5.
26. Barnes DKA, Souster T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Clim Change 2011;1:365-8.
28. Dugger KM, Ainley DG, Lyver PO, Barton K, Ballard G. Survival differences and the effect of environmental instability on breeding dispersal in an Adélie penguin meta-population. Proc Natl Acad Sci U S A 2010;107:12375-80.
29. Arrigo KR, van Dijken GL, Ainley DG, Fahnestock MA, Markus T. Ecological impact of a large Antarctic iceberg. Geophys Res Lett 2002;29:8-1.
30. Thrush SF, Cummings VJ. Massive icebergs, alteration in primary food resources and change in benthic communities at Cape Evans, Antarctica. Mar Ecol 2011;32:289-99.
31. Chambert T, Rotella JJ, Garrott RA. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator†. Proc Biol Sci 2012;279:4532-41.
32. Robinson DA, Dewey KF, Heim Jr RR. Global snow cover monitoring: an update. Bull Amer Meteor Soc 1993;74:1689-96.
33. Gloersen P, Campbell WJ, Cavalieri DJ, Comiso JC, Parkinson CL, Zwally HJ. Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice, 1978-1987. Ann Glaciol 1993;17:149-54.
35. Church JA, Gregory JM, Huybrechts P, et al. Changes in sea level. In: Climate change 2001: the scientific basis: contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press; 2001. p. 639-93. Available from: http://hdl.handle.net/102.100.100/204148?index=1. [Last accessed on 15 Sep 2023].
36. Nitzbon J, Westermann S, Langer M, et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat Commun 2020;11:2201.
37. Pastorino P, Pizzul E, Bertoli M, et al. First insights into plastic and microplastic occurrence in biotic and abiotic compartments, and snow from a high-mountain lake (Carnic Alps). Chemosphere 2021;265:129121.
38. Napper IE, Davies BFR, Clifford H, et al. Reaching new heights in plastic pollution -preliminary findings of microplastics on mount everest. One Earth 2020;3:621-30.
39. Cabrera M, Moulatlet GM, Valencia BG, et al. Microplastics in a tropical Andean Glacier: a transportation process across the Amazon basin? Sci Total Environ 2022;805:150334.
40. Stefánsson H, Peternell M, Konrad-Schmolke M, Hannesdóttir H, Ásbjörnsson EJ, Sturkell E. Microplastics in glaciers: first results from the vatnajökull ice Cap. Sustainability 2021;13:4183.
41. Zhang Y, Gao T, Kang S, Allen S, Luo X, Allen D. Microplastics in glaciers of the Tibetan Plateau: evidence for the long-range transport of microplastics. Sci Total Environ 2021;758:143634.
42. Wang Z, Zhang Y, Kang S, et al. Long-range transport of atmospheric microplastics deposited onto glacier in southeast Tibetan Plateau. Environ Pollut 2022;306:119415.
43. Materić D, Kasper-Giebl A, Kau D, et al. Micro- and nanoplastics in alpine snow: a new method for chemical identification and (semi)quantification in the nanogram range. Environ Sci Technol 2020;54:2353-9.
44. Aves AR, Revell LE, Gaw S, et al. First evidence of microplastics in Antarctic snow. The Cryosphere 2022;16:2127-45.
45. Zhang Y, Gao T, Kang S, et al. Current status and future perspectives of microplastic pollution in typical cryospheric regions. Earth Sci Rev 2022;226:103924.
46. Atanasova N, Stoitsova S, Paunova-Krasteva T, Kambourova M. Plastic degradation by extremophilic bacteria. Int J Mol Sci 2021;22:5610.
47. Urbanek AK, Strzelecki MC, Mirończuk AM. The potential of cold-adapted microorganisms for biodegradation of bioplastics. Waste Manag 2021;119:72-81.
48. Hualpa-cutipa E, Acosta RAS, Cariga OJM, et al. Chapter 20 - Metagenomic approach role of psychrotrophic and psychrophilic microbes in bioremediation. In: Vineet Kumar, Muhammad Bilal, Sushil Kumar Shahi, Vinod Kumar Garg, editors. Metagenomics to Bioremediation. Elsevier; 2023. p. 513-36.
49. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015;13:677-90.
50. Olsen LM, Laney SR, Duarte P, et al. The seeding of ice algal blooms in Arctic pack ice: the multiyear ice seed repository hypothesis. J Geophys Res Biogeosci 2017;122:1529-48.
51. de Sousa AGG, Tomasino MP, Duarte P, et al. Diversity and composition of pelagic prokaryotic and protist communities in a thin arctic sea-ice regime. Microb Ecol 2019;78:388-408.
52. Thiele S, Storesund JE, Fernández-Méndez M, Assmy P, Øvreås L. A winter-to-summer transition of bacterial and archaeal communities in arctic sea ice. Microorganisms 2022;10:1618.
53. Garcia-Lopez E, Ruiz-Blas F, Sanchez-Casanova S, Peña Perez S, Martin-Cerezo ML, Cid C. Microbial communities in volcanic glacier ecosystems. Front Microbiol 2022;13:825632.
54. Paun VI, Icaza G, Lavin P, et al. Total and potentially active bacterial communities entrapped in a late glacial through holocene ice core from Scarisoara Ice Cave, Romania. Front Microbiol 2019;10:1193.
55. Winder JC, Boulton W, Salamov A, et al. Genetic and structural diversity of prokaryotic ice-binding proteins from the central Arctic Ocean. Genes 2023;14:363.
56. Ganguly M, Ariya PA. Ice nucleation of model nanoplastics and microplastics: a novel synthetic protocol and the influence of particle capping at diverse atmospheric environments. ACS Earth Space Chem 2019;3:1729-39.
57. Yu H, Shao J, Jia H, Gang D, Ma B, Hu C. Characteristics and influencing factors of microplastics in snow in the Inner Mongolia Plateau, China. Engineering 2023; doi: 10.1016/j.eng.2023.02.007.
58. Ohno H, Iizuka Y. Microplastics in snow from protected areas in Hokkaido, the northern island of Japan. Sci Rep 2023;13:9942.
59. Evangeliou N, Grythe H, Klimont Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 2020;11:3381.
60. Crosta A, De Felice B, Antonioli D, et al. Microplastic contamination of supraglacial debris differs among glaciers with different anthropic pressures. Sci Total Environ 2022;851:158301.
61. Materić D, Ludewig E, Brunner D, Röckmann T, Holzinger R. Nanoplastics transport to the remote, high-altitude Alps. Environ Pollut 2021;288:117697.
62. Bergmann M, Mützel S, Primpke S, Tekman MB, Trachsel J, Gerdts G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv 2019;5:eaax1157.
63. González-Pleiter M, Edo C, Velázquez D, et al. First detection of microplastics in the freshwater of an Antarctic specially protected area. Mar Pollut Bull 2020;161:111811.
64. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 2015;96:2059-77.
65. Falco F, Cocca M, Avella M, Thompson RC. Microfiber release to water, via laundering, and to air, via everyday use: a comparison between polyester clothing with differing textile parameters. Environ Sci Technol 2020;54:3288-96.
66. Senese A, Pecci M, Ambrosini R, Diolaiuti GA. MOUNTAINPLAST: a new Italian plastic footprint with a focus on mountain activities. Sustainability 2023;15:7017.
67. Abbasi S, Alirezazadeh M, Razeghi N, et al. Microplastics captured by snowfall: a study in Northern Iran. Sci Total Environ 2022;822:153451.
68. Yücel N, Tutsak E, Kiliç E. First evidence of microplastic deposition in snow from Turkey. J Anatol Environ Animal Sci 2023;8:95-102. Available from: https://www.researchgate.net/profile/Nebil-Yucel/publication/368739163_First_evidence_of_microplastic_deposition_in_snow_from_Turkey/links/641210bd315dfb4cce80ebc3/First-evidence-of-microplastic-deposition-in-snow-from-Turkey.pdf. [Last accessed on 15 Sep 2023]
69. Cabrera M, Valencia BG, Lucas-solis O, et al. A new method for microplastic sampling and isolation in mountain glaciers: a case study of one antisana glacier, Ecuadorian Andes. Case Stud Chem Environ Eng 2020;2:100051.
70. Brahney J, Hallerud M, Heim E, Hahnenberger M, Sukumaran S. Plastic rain in protected areas of the United States. Science 2020;368:1257-60.
71. Kozjek M, Vengust D, Radošević T, et al. Dissecting giant hailstones: a glimpse into the troposphere with its diverse bacterial communities and fibrous microplastics. Sci Total Environ 2023;856:158786.
72. Felton A, De La Cruz A, Nordstrand T, Gao Y, Ackley S, Hutchinson J. Analysis of microplastics in hailstones from two supercell thunderstorms. Available from: https://ui.adsabs.harvard.edu/abs/2021AGUFM.A44D..04F. [Last accessed on 15 Sep 2023].
73. Laviola S, Monte G, Cattani E, Levizzani V. Hail climatology in the Mediterranean Basin using the GPM constellation (1999-2021). Remote Sens 2022;14:4320.
74. Fripiat F, Sigman DM, Massé G, Tison JL. High turnover rates indicated by changes in the fixed N forms and their stable isotopes in Antarctic landfast sea ice. J Geophys Res Oceans 2015;120:3079-97.
75. Fraser AD, Massom RA, Ohshima KI, et al. High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000-2018. Earth Syst Sci Data 2020;12:2987-99.
76. Threlfall W. Dispersal of herring gulls from the witless bay sea bird sanctuary, Newfoundland. Available from: https://sora.unm.edu/sites/default/files/journals/jfo/v049n02/p0116-p0124.pdf. [Last accessed on 15 Sep 2023].
77. Merrell Jr TR. Accumulation of plastic litter on beaches of Amchitka Island, Alaska. Mar Environ Res 1980;3:171-84.
78. Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earths Future 2014;2:315-20.
79. von Friesen LW, Granberg ME, Pavlova O, Magnusson K, Hassellöv M, Gabrielsen GW. Summer sea ice melt and wastewater are important local sources of microlitter to Svalbard waters. Environ Int 2020;139:105511.
80. Peeken I, Primpke S, Beyer B, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat Commun 2018;9:1505.
81. Gaylarde CC, de Almeida MP, Neves CV, Neto JAB, da Fonseca EM. The importance of biofilms on microplastic particles in their sinking behavior and the transfer of invasive organisms between ecosystems. Micro 2023;3:320-37.
82. Geilfus NX, Munson KM, Sousa J, et al. Distribution and impacts of microplastic incorporation within sea ice. Mar Pollut Bull 2019;145:463-73.
83. Ball HL, Halsall C. Chapter 8: Plastic pollution in the arctic marine environment. Plast Pollut Glob Ocean 2023:233-58.
84. Mountford AS, Morales Maqueda MA. Modeling the accumulation and transport of microplastics by sea ice. J Geophys Res Oceans 2021;126:e2020JC016826.
85. Ambrosini R, Azzoni RS, Pittino F, Diolaiuti G, Franzetti A, Parolini M. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ Pollut 2019;253:297-301.
86. Allen S, Allen D, Phoenix VR, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 2019;12:339-44.
87. Allen S, Allen D, Moss K, Le Roux G, Phoenix VR, Sonke JE. Examination of the ocean as a source for atmospheric microplastics. PLoS One 2020;15:e0232746.
88. Peternell M, Wilson CJL. Effect of strain rate cycling on microstructures and crystallographic preferred orientation during high-temperature creep. Geology 2016;44:279-82.
89. Wilson CJL, Hunter NJR, Luzin V, Peternell M, Piazolo S. The influence of strain rate and presence of dispersed second phases on the deformation behaviour of polycrystalline D2O ice. J Glaciol 2019;65:101-22.
90. Chen X, Zhang X, Church JA, et al. The increasing rate of global mean sea-level rise during 1993-2014. Nature Clim Change 2017;7:492-5.
91. Jakob L, Gourmelen N. Glacier Mass Loss Between 2010 and 2020 Dominated by Atmospheric Forcing. Geophys Res Lett 2023;50:e2023GL102954.
92. Guo D, Wang H. CMIP5 permafrost degradation projection:a comparison among different regions. J Geophys Res Atmos 2016;121:4499-517.
93. Teufel B, Sushama L. Abrupt changes across the Arctic permafrost region endanger northern development. Nat Clim Chang 2019;9:858-62.
94. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 2017;586:127-41.
95. Wang Z, An C, Chen X, Lee K, Zhang B, Feng Q. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. J Hazard Mater 2021;417:126036.
96. Yang M, Chen B, Xin X, et al. Interactions between microplastics and oil dispersion in the marine environment. J Hazard Mater 2021;403:123944.
97. de Souza Machado AA, Lau CW, Kloas W, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol 2019;53:6044-52.
98. Zhang GS, Liu YF. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 2018;642:12-20.
99. Zhang Z, Ma W, Feng W, Xiao D, Hou X. Reconstruction of soil particle composition during freeze-thaw cycling: a review. Pedosphere 2016;26:167-79.
100. Tabassum A, Rabbani M, Omar SB. An approach to study on time series components and by using them to enumerate the height of sea level alteration for both Global Mean Sea Level (GMSL) and Bay of Bengal (BOB). In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT); 2019 Feb 20-22; Coimbatore, India. IEEE; 2019. p. 1-7.
101. Hassan KMA, Haque MA, Ahmed S. Comparative study of forecasting global mean sea level rising using machine learning. In: 2021 International Conference on Electronics, Communications and Information Technology (ICECIT); 2021 Sep 14-16; Khulna, Bangladesh. IEEE; 2021. p. 1-4.
102. Chung J, Tong G, Chao J, Zhu W. Path analysis of sea-level rise and its impact. Stats 2022;5:12-25.
103. Zhang M. Sea-level Rise in New York in the 21st century: projection and methodology. Available from: https://you.stonybrook.edu/nysrise/files/2014/02/NY-SLR-Projection-by-RISE-May-2015-updated.pdf. [Last accessed on 15 Sep 2023].
104. Kang S, Zhang Y, Qian Y, Wang H. A review of black carbon in snow and ice and its impact on the cryosphere. Earth Sci Rev 2020;210:103346.