REFERENCES

1. Andrady AL. The plastic in microplastics: a review. Mar Pollut Bull 2017;119:12-22.

2. Galgani F, Hanke G, Maes T. Global distribution, composition and abundance of marine litter. In: Bergmann M, Gutow L, Klages M, editors. Marine Anthropogenic Litter. Cham: Springer International Publishing; 2015. pp. 29-56.

3. Costa MF, Barletta M. Microplastics in coastal and marine environments of the western tropical and sub-tropical Atlantic Ocean. Environ Sci Process Impacts 2015;17:1868-79.

4. Woodall LC, Sanchez-Vidal A, Canals M, et al. The deep sea is a major sink for microplastic debris. R Soc Open Sci 2014;1:140317.

5. do Sul JA, Costa MF. The present and future of microplastic pollution in the marine environment. Environ Pollut 2014;185:352-64.

6. Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 2011;62:2588-97.

7. Luo Z, Zhou X, Su Y, et al. Environmental occurrence, fate, impact, and potential solution of tire microplastics: similarities and differences with tire wear particles. Sci Total Environ 2021;795:148902.

8. Redondo-Hasselerharm PE, de Ruijter VN, Mintenig SM, Verschoor A, Koelmans AA. Ingestion and chronic effects of car tire tread particles on freshwater benthic macroinvertebrates. Environ Sci Technol 2018;52:13986-94.

9. Sieber R, Kawecki D, Nowack B. Dynamic probabilistic material flow analysis of rubber release from tires into the environment. Environ Pollut 2020;258:113573.

10. Evangeliou N, Grythe H, Klimont Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 2020;11:3381.

11. Hann S, Darrah C, Sherrington C, Blacklaws K, Horton I, Thompson A. Reducing household contributions to marine plastic pollution. Available from: https://www.eunomia.co.uk/reports-tools/reducing-household-contributions-to-marine-plastic-pollution/. [Last accessed on 25 May 2023].

12. Liu Y, Chen H, Wu S, et al. Impact of vehicle type, tyre feature and driving behaviour on tyre wear under real-world driving conditions. Sci Total Environ 2022;842:156950.

13. Zhang M, Yin H, Tan J, et al. A comprehensive review of tyre wear particles: formation, measurements, properties, and influencing factors. Atmos Environ 2023;297:119597.

14. Global industry tire volume to reach 2.7 billion units by 2022. Available from: https://www.smithers.com/resources/2017/dec/global-industry-tire-volume-to-reach-2-7-billion. [Last accessed on 25 May 2023].

15. Ren Q, Lei Z, Hu S, et al. Novel photothermal pyrolysis on waste fan blade to generate bisphenol A. JAAP 2023;169:105828.

16. Chen H, Qin Y, Huang H, Xu W. A regional difference analysis of microplastic pollution in global freshwater bodies based on a regression model. Water 2020;12:1889.

17. Dannis ML. Rubber dust from the normal wear of tires. Rubber Chem Technol 1974;47:1011-37.

18. Canepari S, Castellano P, Astolfi ML, et al. Release of particles, organic compounds, and metals from crumb rubber used in synthetic turf under chemical and physical stress. Environ Sci Pollut Res Int 2018;25:1448-59.

19. Wik A, Dave G. Occurrence and effects of tire wear particles in the environment--a critical review and an initial risk assessment. Environ Pollut 2009;157:1-11.

20. Rhodes EP, Ren Z, Mays DC. Zinc leaching from tire crumb rubber. Environ Sci Technol 2012;46:12856-63.

21. Castro RO, Silva ML, Marques MRC, de Araújo FV. Evaluation of microplastics in Jurujuba Cove, Niterói, RJ, Brazil, an area of mussels farming. Mar Pollut Bull 2016;110:555-8.

22. Figueiredo GM, Vianna TMP. Suspended microplastics in a highly polluted bay: Abundance, size, and availability for mesozooplankton. Mar Pollut Bull 2018;135:256-65.

23. Alves VEN, Figueiredo GM. Microplastic in the sediments of a highly eutrophic tropical estuary. Mar Pollut Bull 2019;146:326-35.

24. Olivatto GP, Martins MCT, Montagner CC, Henry TB, Carreira RS. Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil. Mar Pollut Bull 2019;139:157-62.

25. Silva MM, Maldonado GC, Castro RO, et al. Dispersal of potentially pathogenic bacteria by plastic debris in Guanabara Bay, RJ, Brazil. Mar Pollut Bull 2019;141:561-8.

26. Castro RO, Silva MLD, Marques MRC, Araújo FV. Spatio-temporal evaluation of macro, meso and microplastics in surface waters, bottom and beach sediments of two embayments in Niterói, RJ, Brazil. Mar Pollut Bull 2020;160:111537.

27. Carvalho DG, Baptista Neto JA. Microplastic pollution of the beaches of Guanabara Bay, Southeast Brazil. Ocean Coast 2016;128:10-7.

28. Birnstiel S, Soares-Gomes A, da Gama BAP. Depuration reduces microplastic content in wild and farmed mussels. Mar Pollut Bull 2019;140:241-7.

29. Worek J, Badura X, Białas A, Chwiej J, Kawoń K, Styszko K. Pollution from transport: detection of tyre particles in environmental samples. Energies 2022;15:2816.

30. Degaffe FS, Turner A. Leaching of zinc from tire wear particles under simulated estuarine conditions. Chemosphere 2011;85:738-43.

31. Liu F, Olesen KB, Borregaard AR, Vollertsen J. Microplastics in urban and highway stormwater retention ponds. Sci Total Environ 2019;671:992-1000.

32. Ribeiro AM, da Rocha CC, Franco CF, Fontana LF, Pereira Netto AD. Seasonal variation of polycyclic aromatic hydrocarbons concentrations in urban streams at Niterói City, RJ, Brazil. Mar Pollut Bull 2012;64:2834-8.

33. Franco CFJ, de Resende MF, de Almeida Furtado L, Brasil TF, Eberlin MN, Netto ADP. Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niterói, Brazil: Particle size distribution, sources and cancer risk assessment. Sci Total Environ 2017;599-600:305-13.

34. Baptista Neto JA, Smith BJ, Mcallister JJ. Concentrações de metais pesados em sedimentos de escoamento superficial urbano: implicações quanto à qualidade ambiental em Niterói/RJ - Brasil. Available from: https://pesquisadores.uff.br/academic-production/concentra%C3%A7%C3%B5es-de-metais-pesados-em-sedimentos-de-escoamento-superficial-urbano. [Last accessed on 25 May 2023].

35. Pereira E, Baptista Neto JA, Smith BJ, Mcallister JJ. The contribution of heavy metal pollution derived from highway runoff to Guanabara Bay sediments -- Rio de Janeiro/Brazil. An Acad Bras Cienc ;79:739-50.

36. Baptista Neto JA, Rangel CMA, Da Fonseca EM, et al. Concentrations and physicochemical speciation of heavy metals in urban runoff sediment from São Gonçalo—Rio de Janeiro/Brazil. Environ Earth Sci 2016:75.

37. Mcallister JJ, Smith BJ, Baptista Neto JA. The presence of calcium oxalate dihydrate (weddellite) in street sediments from niterói, brazil and its health implications. Environ Geochem Health :2000. 22, 195-210.

38. McAlister JJ, Smith BJ, Neto JB, Simpson JK. Geochemical distribution and bioavailability of heavy metals and oxalate in street sediments from Rio de Janeiro, Brazil: a preliminary investigation. Environ Geochem Health 2005;27:429-41.

39. Maltby L, Boxall AB, Forrow DM, Calow P, Betton CI. The effects of motorway runoff on freshwater ecosystems: 2. Identifying major toxicants. Environ Toxicol Chem 1995;14:1093-101.

40. Soares-gomes A, da Gama B, Baptista Neto J, et al. An environmental overview of Guanabara Bay, Rio de Janeiro. Reg Stud Mar 2016;8:319-30.

41. Kjerfve B, Ribeiro CH, Dias GT, Filippo AM, Da Silva Quaresma V. Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 1997;17:1609-43.

42. Catanzaro LF, Baptista Neto JA, Guimarães MSD, Silva CG. Distinctive sedimentary processes in Guanabara Bay - SE/Brazil, based on the analysis of echo-character (7.0 kHz). Rev Bras Geof 2004;22:69-83.

43. Neto JAB, Gingele FX, Leipe T, Brehme I. Spatial distribution of heavy metals in surficial sediments from Guanabara Bay: Rio de Janeiro, Brazil. Environ Geol 2006;49:1051-63.

44. Fonseca E, Baptista Neto J, Silva C, Mcalister J, Smith B, Fernandez M. Stormwater impact in Guanabara Bay (Rio de Janeiro): Evidences of seasonal variability in the dynamic of the sediment heavy metals. Estuar Coast Shelf Sci 2013;130:161-8.

45. Carreira RS, Wagener AL, Readman JW, Fileman TW, Macko SA, Veiga Á. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Mar Chem 2002;79:207-27.

46. Covelli S, Protopsalti I, Acquavita A, Sperle M, Bonardi M, Emili A. Spatial variation, speciation and sedimentary records of mercury in the Guanabara Bay (Rio de Janeiro, Brazil). Cont Shelf Res 2012;35:29-42.

47. Vilela CG, Figueira BO, Macedo MC, Baptista Neto JA. Late Holocene evolution and increasing pollution in Guanabara Bay, Rio de Janeiro, SE Brazil. Mar Pollut Bull 2014;79:175-87.

48. do Nascimento MTL, Santos ADO, Felix LC, et al. Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil. Ecotoxicol Environ Saf 2018;149:197-202.

49. Carvalho Aguiar VM, Abuchacra PFF, Neto JAB, de Oliveira AS. Environmental assessment concerning trace metals and ecological risks at Guanabara Bay, RJ, Brazil. Environ Monit Assess 2018;190:448.

50. Thompson RC, Olsen Y, Mitchell RP, et al. Lost at sea: where is all the plastic? Science 2004;304:838.

51. Cowger W, Steinmetz Z, Gray A, et al. Microplastic spectral classification needs an open source community: open specy to the rescue! Anal Chem 2021;93:7543-8.

52. Rødland, E.S., 2019. Ecotoxic potential of road-associated microplastic particles (RAMP). Available from: https://vannforeningen.no/wp-content/uploads/2019/12/R%C3%B8dland.pdf. [Last accessed on 25 May 2023].

53. Magni S, Tediosi E, Maggioni D, et al. Ecological impact of End-of-Life-Tire (ELT)-Derived rubbers: acute and chronic effects at organism and population levels. Toxics :2022, 10, 201.

54. Ziajahromi S, Drapper D, Hornbuckle A, Rintoul L, Leusch FDL. Microplastic pollution in a stormwater floating treatment wetland: detection of tyre particles in sediment. Sci Total Environ 2020;713:136356.

55. Parker-Jurd FNF, Napper IE, Abbott GD, Hann S, Thompson RC. Quantifying the release of tyre wear particles to the marine environment via multiple pathways. Mar Pollut Bull 2021;172:112897.

56. Oliveira LCD, Baptista Neto JA, Villena HH, Melo GV, Drabinski TL, Fonseca EMD. The use of sidescan sonar to detect large benthic marine debris in Niterói Harbor-Guanabara Bay/SE Brazil. Braz J Geophys 2022;39:295.

57. Torretta V, Rada EC, Ragazzi M, Trulli E, Istrate IA, Cioca LI. Treatment and disposal of tyres: Two EU approaches. A review. Waste Manag 2015;45:152-60.

58. Järlskog I, Jaramillo-Vogel D, Rausch J, Gustafsson M, Strömvall AM, Andersson-Sköld Y. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environ Int 2022;170:107618.

59. Arias AH, Alfonso MB, Girones L, Piccolo MC, Marcovecchio JE. Synthetic microfibers and tyre wear particles pollution in aquatic systems: Relevance and mitigation strategies. Environ Pollut 2022;295:118607.

60. Alexandrova O, Kaloush KE, Allen JO. Impact of asphalt rubber friction course overlays on tire wear emissions and air quality models for phoenix, arizona, airshed. Transp Res Rec 2007;2011:98-106.

61. Acevedo B, Fernández A, Barriocanal C. Identification of polymers in waste tyre reinforcing fibre by thermal analysis and pyrolysis. J Anal Appl Pyrolysis 2015;111:224-32.

62. Moghaddamzadeh S, Rodrigue D. The effect of polyester recycled tire fibers mixed with ground tire rubber on polyethylene composites. Part I: Morphological analysis. Prog Rubber Plast Recycl Technol 2018;34:200-20.

63. Thai QB, Chong RO, Nguyen PT, et al. Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. J Environ Chem Eng 2020;8:104279.

64. Page TS, Almeda R, Koski M, Bournaka E, Nielsen TG. Toxicity of tyre wear particle leachates to marine phytoplankton. Aquat Toxicol 2022;252:106299.

65. Garrard SL, Spicer JI, Thompson RC. Tyre particle exposure affects the health of two key estuarine invertebrates. Environ Pollut 2022;314:120244.

66. Baensch-Baltruschat B, Kocher B, Stock F, Reifferscheid G. Tyre and road wear particles (TRWP) - a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci Total Environ 2020;733:137823.

67. Wagner S, Hüffer T, Klöckner P, Wehrhahn M, Hofmann T, Reemtsma T. Tire wear particles in the aquatic environment - a review on generation, analysis, occurrence, fate and effects. Water Res 2018;139:83-100.

68. White JL. Rubber processing technology- materials, principles. 1995. Available from: https://books.google.com.hk/books/about/Rubber_Processing.html?id=qgHkwAEACAAJ&redir_esc=y. [Last accessed on 25 May 2023]

69. Smolders E, Degryse F. Fate and effect of zinc from tire debris in soil. Environ Sci Technol 2002;36:3706-10.

70. Bocca B, Forte G, Petrucci F, Costantini S, Izzo P. Metals contained and leached from rubber granulates used in synthetic turf areas. Sci Total Environ 2009;407:2183-90.

71. Llompart M, Sanchez-Prado L, Pablo Lamas J, Garcia-Jares C, Roca E, Dagnac T. Hazardous organic chemicals in rubber recycled tire playgrounds and pavers. Chemospher :e 2013. 90, 423-431.

72. Ruffino B, Fiore S, Zanetti MC. Environmental-sanitary risk analysis procedure applied to artificial turf sports fields. Environ Sci Pollut Res Int 2013;20:4980-92.

73. Song J, Beule L, Jongmans-hochschulz E, Wichels A, Gerdts G. The travelling particles: community dynamics of biofilms on microplastics transferred along a salinity gradient. ISME COMMUN 2022:2.

74. Sathicq MB, Sabatino R, Di Cesare A, et al. PET particles raise microbiological concerns for human health while tyre wear microplastic particles potentially affect ecosystem services in waters. J Hazard Mater 2022;429:128397.

75. Lamprea K, Bressy A, Mirande-Bret C, Caupos E, Gromaire MC. Alkylphenol and bisphenol A contamination of urban runoff: an evaluation of the emission potentials of various construction materials and automotive supplies. Environ Sci Pollut Res Int 2018;25:21887-900.

76. Staniszewska M, Graca B, Nehring I. The fate of bisphenol A, 4-tert-octylphenol and 4-nonylphenol leached from plastic debris into marine water--experimental studies on biodegradation and sorption on suspended particulate matter and nano-TiO2. Chemosphere 2016;145:535-42.

77. Santos ADO, Nascimento MTL, Carvalho DG, Baptista Neto JA, Bila DM. Evaluation of the presence of Bisphenol A and microplastics in the bottom sediments of Guanabara Bay. Available from: http://uest.ntua.gr/naxos2018/proceedings/pdf/117_NAXOS2018_Santos_etal.pdf. [Last accessed on 25 May 2023]

78. ECHA (European Chemicals Agency). Annex XV restriction report version 0.1, 7 October 2022. Available from: https://echa.europa.eu/documents/10162/450ca46b-493f-fd0c-afec-c3aea39de487. [Last accessed on 25 May 2023].

79. Mattonai M, Nacci T, Modugno F. Analytical strategies for the quali-quantitation of tire and road wear particles - A critical review. TrAC Trends in Anal Chem 2022;154:116650.

80. Rødland ES, Lind OC, Reid M, et al. Characterization of tire and road wear microplastic particle contamination in a road tunnel: From surface to release. J Hazard Mater 2022;435:129032.

81. Rauert C, Rødland ES, Okoffo ED, Reid MJ, Meland S, Thomas KV. Challenges with quantifying tire road wear particles: recognizing the need for further refinement of the ISO technical specification. Environ Sci Technol Lett 2021;8:231-6.

82. Rauert C, Charlton N, Okoffo ED, et al. Concentrations of tire additive chemicals and tire road wear particles in an Australian urban tributary. Environ Sci Technol 2022;56:2421-31.

83. Rausch J, Jaramillo-Vogel D, Perseguers S, Schnidrig N, Grobéty B, Yajan P. Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier. Sci Total Environ 2022;803:149832.

84. Gillibert R, Magazzù A, Callegari A, et al. Raman tweezers for tire and road wear micro- and nanoparticles analysis. Environ Sci : Nano 2022;9:145-61.

85. Harrison RM, Alghamdi MA. Measurement of tyre dust particles in the atmosphere using chemical tracers. Atmos Environ 2023;298:119607.

Water Emerging Contaminants & Nanoplastics
ISSN 2831-2597 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/