REFERENCES
2. PlasticsEurope. Plastics - the facts 2021. An analysis of European plastics production, demand and waste data. Available from: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ [Last accessed on 15 Nov 2022].
3. Commission. Document 32022D0162. Commission implementing decision (EU) 2022/162. Off J Eur Union 2022;26:19-35.
4. da Costa J, Rocha T, Duarte A. The environmental impacts of plastics and micro-plastics use, waste and pollution: EU and national measures. European Parlament Study; 2020. Available from: https://www.europarl.europa.eu/thinktank/en/document/IPOL_STU(2020)658279 [Last accessed on 15 Nov 2022].
5. Alfonso MB, Arias AH, Ronda AC, Piccolo MC. Continental microplastics: presence, features, and environmental transport pathways. Sci Total Environ 2021;799:149447.
6. Koutnik VS, Leonard J, Alkidim S, et al. Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling. Environ Pollut 2021;274:116552.
7. Edo C, González-Pleiter M, Leganés F, Fernández-Piñas F, Rosal R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ Pollut 2020;259:113837.
8. González-Pleiter M, Edo C, Aguilera Á, et al. Occurrence and transport of microplastics sampled within and above the planetary boundary layer. Sci Total Environ 2021;761:143213.
9. Isobe A, Azuma T, Cordova MR, et al. A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes. Micropl & Nanopl 2021;1:1-14.
10. Meijer LJJ, van Emmerik T, van der Ent R, Schmidt C, Lebreton L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci Adv 2021;7:eaaz5803.
11. Sorasan C, Edo C, González-Pleiter M, et al. Generation of nanoplastics during the photoageing of low-density polyethylene. Environ Pollut 2021;289:117919.
12. Tamayo-Belda M, Pulido-Reyes G, González-Pleiter M, et al. Identification and toxicity towards aquatic primary producers of the smallest fractions released from hydrolytic degradation of polycaprolactone microplastics. Chemosphere 2022;303:134966.
13. Song YK, Hong SH, Eo S, Han GM, Shim WJ. Rapid production of micro- and nanoplastics by fragmentation of expanded polystyrene exposed to sunlight. Environ Sci Technol 2020;54:11191-200.
14. Sorasan C, Edo C, González-Pleiter M, et al. Ageing and fragmentation of marine microplastics. Sci Total Environ 2022;827:154438.
15. Lins TF, O’brien AM, Kose T, Rochman CM, Sinton D. Toxicity of nanoplastics to zooplankton is influenced by temperature, salinity, and natural particulate matter. Environ Sci: Nano 2022;9:2678-90.
16. Ekvall MT, Gimskog I, Hua J, Kelpsiene E, Lundqvist M, Cedervall T. Size fractionation of high-density polyethylene breakdown nanoplastics reveals different toxic response in Daphnia magna. Sci Rep 2022;12:3109.
17. Monikh FA, Durão M, Kipriianov PV, et al. Chemical composition and particle size influence the toxicity of nanoscale plastic debris and their co-occurring benzo(α)pyrene in the model aquatic organisms Daphnia magna and Danio rerio. NanoImpact 2022;25:100382.
18. Santos J, Barreto A, Sousa ÉML, Calisto V, Amorim MJB, Maria VL. The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms. Environ Pollut 2022;303:119166.
19. Gigault J, El Hadri H, Nguyen B, et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat Nanotechnol 2021;16:501-7.
20. Cai H, Xu EG, Du F, Li R, Liu J, Shi H. Analysis of environmental nanoplastics: progress and challenges. Chem Eng J 2021;410:128208.
21. Caldwell J, Taladriz-Blanco P, Lehner R, et al. The micro-, submicron-, and nanoplastic hunt: a review of detection methods for plastic particles. Chemosphere 2022;293:133514.
22. Materić D, Kjær HA, Vallelonga P, Tison JL, Röckmann T, Holzinger R. Nanoplastics measurements in Northern and Southern polar ice. Environ Res 2022;208:112741.
23. Wahl A, Le Juge C, Davranche M, et al. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere 2021;262:127784.
24. Mitrano DM, Wick P, Nowack B. Placing nanoplastics in the context of global plastic pollution. Nat Nanotechnol 2021;16:491-500.
25. Oliveira M, Almeida M. The why and how of micro(nano)plastic research. Trac-trend Anal Chem 2019;114:196-201.
26. Liu L, Xu K, Zhang B, Ye Y, Zhang Q, Jiang W. Cellular internalization and release of polystyrene microplastics and nanoplastics. Sci Total Environ 2021;779:146523.
27. Zhang B, Chao J, Chen L, Liu L, Yang X, Wang Q. Research progress of nanoplastics in freshwater. Sci Total Environ 2021;757:143791.
28. Wang T, Li B, Zou X, et al. Emission of primary microplastics in mainland China: Invisible but not negligible. Water Res 2019;162:214-24.
29. Enfrin M, Lee J, Gibert Y, Basheer F, Kong L, Dumée LF. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J Hazard Mater 2020;384:121393.
30. Kelly MR, Lant NJ, Kurr M, Burgess JG. Importance of water-volume on the release of microplastic fibers from laundry. Environ Sci Technol 2019;53:11735-44.
31. Tallec K, Blard O, González-Fernández C, et al. Surface functionalization determines behavior of nanoplastic solutions in model aquatic environments. Chemosphere 2019;225:639-46.
32. Shi Q, Tang J, Liu X, Liu R. Ultraviolet-induced photodegradation elevated the toxicity of polystyrene nanoplastics on human lung epithelial A549 cells. Environ Sci : Nano 2021;8:2660-75.
33. Abdelsaleheen O, Abdolahpur Monikh F, Keski-Saari S, Akkanen J, Taskinen J, Kortet R. The joint adverse effects of aged nanoscale plastic debris and their co-occurring benzo[α]pyrene in freshwater mussel (Anodonta anatina). Sci Total Environ 2021;798:149196.
34. Duan J, Li Y, Gao J, Cao R, Shang E, Zhang W. ROS-mediated photoaging pathways of nano- and micro-plastic particles under UV irradiation. Water Res 2022;216:118320.
35. Liu P, Qian L, Wang H, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environ Sci Technol 2019;53:3579-88.
36. Zhang Y, Goss GG. The “Trojan Horse” effect of nanoplastics: potentiation of polycyclic aromatic hydrocarbon uptake in rainbow trout and the mitigating effects of natural organic matter. Environ Sci: Nano 2021;8:3685-98.
37. Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol 2019;53:12300-10.
38. Morgana S, Casentini B, Amalfitano S. Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. J Hazard Mater 2021;419:126507.
39. Zhang W, Dong Z, Zhu L, Hou Y, Qiu Y. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative raman imaging and scanning electron microscopy. ACS Nano 2020;14:7920-6.
40. Luo Y, Chuah C, Amin MA, et al. Assessment of microplastics and nanoplastics released from a chopping board using Raman imaging in combination with three algorithms. J Hazard Mater 2022;431:128636.
41. Munoz LP, Baez AG, Purchase D, Jones H, Garelick H. Release of microplastic fibres and fragmentation to billions of nanoplastics from period products: preliminary assessment of potential health implications. Environ Sci: Nano 2022;9:606-20.
42. Xu Y, Ou Q, Jiao M, Liu G, van der Hoek JP. Identification and quantification of nanoplastics in surface water and groundwater by pyrolysis gas chromatography-mass spectrometry. Environ Sci Technol 2022;56:4988-97.
43. Materić D, Peacock M, Dean J, et al. Presence of nanoplastics in rural and remote surface waters. Environ Res Lett 2022;17:054036.
44. Materić D, Kasper-Giebl A, Kau D, et al. Micro- and nanoplastics in alpine snow: a new method for chemical identification and (semi)quantification in the nanogram range. Environ Sci Technol 2020;54:2353-9.
45. Reynaud S, Aynard A, Grassl B, Gigault J. Nanoplastics: from model materials to colloidal fate. Curr Opin Colloid Interface Sci 2022;57:101528.
46. Shiu RF, Vazquez CI, Tsai YY, et al. Nano-plastics induce aquatic particulate organic matter (microgels) formation. Sci Total Environ 2020;706:135681.
47. Li X, He E, Xia B, et al. Protein corona-induced aggregation of differently sized nanoplastics: impacts of protein type and concentration. Environ Sci: Nano 2021;8:1560-70.
48. Li X, He E, Xia B, et al. Impact of CeO2 nanoparticles on the aggregation kinetics and stability of polystyrene nanoplastics: importance of surface functionalization and solution chemistry. Water Res 2020;186:116324.
49. Pradel A, Ferreres S, Veclin C, et al. Stabilization of fragmental polystyrene nanoplastic by natural organic matter: insight into mechanisms. ACS EST Water 2021;1:1198-208.
50. Singh N, Tiwari E, Khandelwal N, Darbha GK. Understanding the stability of nanoplastics in aqueous environments: effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environ Sci: Nano 2019;6:2968-76.
51. Yu S, Shen M, Li S, et al. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. Environ Pollut 2019;255:113302.
52. Liu Y, Hu Y, Yang C, Chen C, Huang W, Dang Z. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments. Water Res 2019;163:114870.
53. Mao Y, Li H, Huangfu X, Liu Y, He Q. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations. Environ Pollut 2020;258:113760.
54. Liu Y, Huang Z, Zhou J, et al. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems. Water Res 2020;186:116316.
55. Shams M, Alam I, Chowdhury I. Aggregation and stability of nanoscale plastics in aquatic environment. Water Res 2020;171:115401.
56. Dong S, Cai W, Xia J, Sheng L, Wang W, Liu H. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid. Environ Pollut 2021;268:115828.
57. Wang J, Zhao X, Wu A, et al. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters. Environ Pollut 2021;268:114240.
58. Xu Y, Ou Q, He Q, Wu Z, Ma J, Huangfu X. Influence of dissolved black carbon on the aggregation and deposition of polystyrene nanoplastics: comparison with dissolved humic acid. Water Res 2021;196:117054.
59. Huang Z, Chen C, Liu Y, et al. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment. Water Res 2022;219:118522.
60. Li X, Ji S, He E, et al. UV/ozone induced physicochemical transformations of polystyrene nanoparticles and their aggregation tendency and kinetics with natural organic matter in aqueous systems. J Hazard Mater 2022;433:128790.
61. Zhang Y, Su X, Tam NF, et al. An insight into aggregation kinetics of polystyrene nanoplastics interaction with metal cations. Chin Chem Lett 2022;33:5213-7.
62. Gong Y, Bai Y, Zhao D, Wang Q. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation. Water Res 2022;208:117884.
63. Kaushal SS, Likens GE, Pace ML, et al. Novel “chemical cocktails” in inland waters are a consequence of the freshwater salinization syndrome. Philos Trans R Soc Lond B Biol Sci 2018;374:20180017.
64. Wu J, Ye Q, Wu P, et al. Heteroaggregation of nanoplastics with oppositely charged minerals in aquatic environment: experimental and theoretical calculation study. Chem Eng J 2022;428:131191.
65. van Wijnen J, Ragas AMJ, Kroeze C. Modelling global river export of microplastics to the marine environment: sources and future trends. Sci Total Environ 2019;673:392-401.
66. Yan Z, Xu L, Zhang W, et al. Comparative toxic effects of microplastics and nanoplastics on Chlamydomonas reinhardtii: growth inhibition, oxidative stress, and cell morphology. J Water Process Eng 2021;43:102291.
67. Xiao Y, Jiang X, Liao Y, Zhao W, Zhao P, Li M. Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere 2020;255:126914.
68. Chen Y, Ling Y, Li X, Hu J, Cao C, He D. Size-dependent cellular internalization and effects of polystyrene microplastics in microalgae P. helgolandica var. tsingtaoensis and S. quadricauda. J Hazard Mater 2020;399:123092.
69. Baudrimont M, Arini A, Guégan C, et al. Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves). Environ Sci Pollut Res Int 2020;27:3746-55.
70. Feng L, Li J, Xu EG, et al. Short-term exposure to positively charged polystyrene nanoparticles causes oxidative stress and membrane destruction in cyanobacteria. Environ Sci: Nano 2019;6:3072-9.
71. Feng LJ, Sun XD, Zhu FP, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial microcystis aeruginosa. Environ Sci Technol 2020;54:3386-94.
72. Li S, Wang P, Zhang C, et al. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. Sci Total Environ 2020;714:136767.
73. Yang Y, Guo Y, O'Brien AM, Lins TF, Rochman CM, Sinton D. Biological responses to climate change and nanoplastics are altered in concert: full-factor screening reveals effects of multiple stressors on primary producers. Environ Sci Technol 2020;54:2401-10.
74. Wu D, Wang T, Wang J, Jiang L, Yin Y, Guo H. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production. Sci Total Environ 2021;761:143265.
75. Yang W, Gao P, Li H, et al. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa. Sci Total Environ 2021;783:146919.
76. Zheng X, Yuan Y, Li Y, Liu X, Wang X, Fan Z. Polystyrene nanoplastics affect growth and microcystin production of Microcystis aeruginosa. Environ Sci Pollut Res Int 2021;28:13394-403.
77. Schampera C, Wolinska J, Bachelier JB, et al. Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton. Environ Pollut 2021;277:116781.
78. Tamayo-belda M, Vargas-guerrero JJ, Martín-betancor K, et al. Understanding nanoplastic toxicity and their interaction with engineered cationic nanopolymers in microalgae by physiological and proteomic approaches. Environ Sci: Nano 2021;8:2277-96.
79. Wang F, Wang B, Qu H, et al. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa. Environ Pollut 2020;263:114593.
80. Cao J, Liao Y, Yang W, Jiang X, Li M. Enhanced microalgal toxicity due to polystyrene nanoplastics and cadmium co-exposure: from the perspective of physiological and metabolomic profiles. J Hazard Mater 2022;427:127937.
81. Rowenczyk L, Leflaive J, Clergeaud F, et al. Heteroaggregates of polystyrene nanospheres and organic matter: preparation, characterization and evaluation of their toxicity to algae in environmentally relevant conditions. Nanomaterials (Basel) 2021;11:482.
82. Bellingeri A, Bergami E, Grassi G, et al. Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Aquat Toxicol 2019;210:179-87.
83. Huang B, Wei ZB, Yang LY, Pan K, Miao AJ. Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae. Environ Sci Technol 2019;53:3871-9.
84. Liao Y, Jiang X, Xiao Y, Li M. Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: perspective from the physiological and transcriptional responses. Aquat Toxicol 2020;228:105650.
85. Giri S, Mukherjee A. Ageing with algal EPS reduces the toxic effects of polystyrene nanoplastics in freshwater microalgae Scenedesmus obliquus. J Environ Chem Eng 2021;9:105978.
86. Wan JK, Chu WL, Kok YY, Lee CS. Influence of polystyrene microplastic and nanoplastic on copper toxicity in two freshwater microalgae. Environ Sci Pollut Res Int ;2021:33649-68.
87. Das S, Thiagarajan V, Chandrasekaran N, Ravindran B, Mukherjee A. Nanoplastics enhance the toxic effects of titanium dioxide nanoparticle in freshwater algae Scenedesmus obliquus. Comp Biochem Physiol C Toxicol Pharmacol 2022;256:109305.
88. Hanachi P, Khoshnamvand M, Walker TR, Hamidian AH. Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: Toxicity mitigation using humic acid. Aquat Toxicol 2022;245:106123.
89. Verdú I, Amariei G, Plaza-Bolaños P, et al. Polystyrene nanoplastics and wastewater displayed antagonistic toxic effects due to the sorption of wastewater micropollutants. Sci Total Environ 2022;819:153063.
90. Zhang Y, Li X, Liang J, et al. Microcystis aeruginosa’s exposure to an antagonism of nanoplastics and MWCNTs: the disorders in cellular and metabolic processes. Chemosphere 2022;288:132516.
91. Bhagat J, Nishimura N, Shimada Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J Hazard Mater 2021;405:123913.
92. Yan N, Tang BZ, Wang WX. Cell cycle control of nanoplastics internalization in phytoplankton. ACS Nano 2021;15:12237-48.
93. Holzer M, Mitrano DM, Carles L, Wagner B, Tlili A. Important ecological processes are affected by the accumulation and trophic transfer of nanoplastics in a freshwater periphyton-grazer food chain. Environ Sci: Nano 2022;9:2990-3003.
94. Yang W, Gao P, Ma G, et al. Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure. Environ Pollut 2021;284:117413.
95. Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci Total Environ 2021;763:143038.
96. Liu Z, Yu P, Cai M, et al. Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere 2019;215:74-81.
97. Kelpsiene E, Torstensson O, Ekvall MT, Hansson LA, Cedervall T. Long-term exposure to nanoplastics reduces life-time in Daphnia magna. Sci Rep 2020;10:5979.
98. Liu Z, Jiao Y, Chen Q, et al. Two sigma and two mu class genes of glutathione S-transferase in the waterflea Daphnia pulex: Molecular characterization and transcriptional response to nanoplastic exposure. Chemosphere 2020;248:126065.
99. Liu Z, Li Y, Pérez E, et al. Polystyrene nanoplastic induces oxidative stress, immune defense, and glycometabolism change in Daphnia pulex: application of transcriptome profiling in risk assessment of nanoplastics. J Hazard Mater 2021;402:123778.
100. Liu Z, Li Y, Sepúlveda MS, et al. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics. Sci Total Environ 2021;766:144249.
101. Pochelon A, Stoll S, Slaveykova VI. Polystyrene nanoplastic behavior and toxicity on crustacean daphnia magna: media composition, size, and surface charge effects. Environments 2021;8:101.
102. Saavedra J, Stoll S, Slaveykova VI. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ Pollut 2019;252:715-22.
103. Nogueira DJ, Silva ACOD, da Silva MLN, Vicentini DS, Matias WG. Individual and combined multigenerational effects induced by polystyrene nanoplastic and glyphosate in Daphnia magna (Strauss, 1820). Sci Total Environ 2022;811:151360.
104. Fadare OO, Wan B, Guo L, Xin Y, Qin W, Yang Y. Humic acid alleviates the toxicity of polystyrene nanoplastic particles to Daphnia magna. Environ Sci: Nano 2019;6:1466-77.
105. Lin W, Jiang R, Xiong Y, et al. Quantification of the combined toxic effect of polychlorinated biphenyls and nano-sized polystyrene on Daphnia magna. J Hazard Mater 2019;364:531-6.
106. Frankel R, Ekvall MT, Kelpsiene E, Hansson L, Cedervall T. Controlled protein mediated aggregation of polystyrene nanoplastics does not reduce toxicity towards Daphnia magna. Environ Sci: Nano 2020;7:1518-24.
107. Lin W, Jiang R, Xiao X, et al. Joint effect of nanoplastics and humic acid on the uptake of PAHs for Daphnia magna: a model study. J Hazard Mater 2020;391:122195.
108. Liu Z, Cai M, Wu D, et al. Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations. Environ Pollut 2020;256:113506.
109. Liu Z, Huang Y, Jiao Y, et al. Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex. Aquat Toxicol 2020;220:105420.
110. De Felice B, Sugni M, Casati L, Parolini M. Molecular, biochemical and behavioral responses of Daphnia magna under long-term exposure to polystyrene nanoplastics. Environ Int 2022;164:107264.
111. De Felice B, Sabatini V, Antenucci S, et al. Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna. Chemosphere 2019;231:423-31.
112. Abdolahpur Monikh F, Chupani L, Vijver MG, Peijnenburg WJGM. Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size. Environ Pollut 2021;269:116066.
113. Parenti CC, Ghilardi A, Della Torre C, Magni S, Del Giacco L, Binelli A. Evaluation of the infiltration of polystyrene nanobeads in zebrafish embryo tissues after short-term exposure and the related biochemical and behavioural effects. Environ Pollut 2019;254:112947.
114. Sarasamma S, Audira G, Siregar P, et al. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of wide spread health risk of exposure. Int J Mol Sci 2020;21:1410.
115. Sökmen TÖ, Sulukan E, Türkoğlu M, Baran A, Özkaraca M, Ceyhun SB. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). Neurotoxicology 2020;77:51-9.
116. Venâncio C, Melnic I, Tamayo-Belda M, Oliveira M, Martins MA, Lopes I. Polymethylmethacrylate nanoplastics can cause developmental malformations in early life stages of Xenopus laevis. Sci Total Environ 2022;806:150491.
117. Venâncio C, Savuca A, Oliveira M, Martins MA, Lopes I. Polymethylmethacrylate nanoplastics effects on the freshwater cnidarian Hydra viridissima. J Hazard Mater 2021;402:123773.
118. Auclair J, Quinn B, Peyrot C, Wilkinson KJ, Gagné F. Detection, biophysical effects, and toxicity of polystyrene nanoparticles to the cnidarian Hydra attenuata. Environ Sci Pollut Res Int 2020;27:11772-81.
119. Li Y, Liu Z, Li M, et al. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense. J Hazard Mater 2020;398:122990.
120. Zhang R, Silic MR, Schaber A, Wasel O, Freeman JL, Sepúlveda MS. Exposure route affects the distribution and toxicity of polystyrene nanoplastics in zebrafish. Sci Total Environ 2020;724:138065.
121. Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). Sci Total Environ 2021;791:147984.
122. Guimarães ATB, Estrela FN, Pereira PS, et al. Toxicity of polystyrene nanoplastics in Ctenopharyngodon idella juveniles: a genotoxic, mutagenic and cytotoxic perspective. Sci Total Environ 2021;752:141937.
123. Sendra M, Pereiro P, Yeste MP, Mercado L, Figueras A, Novoa B. Size matters: Zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism. Environ Pollut 2021;268:115769.
124. Fan W, Yang P, Qiao Y, Su M, Zhang G. Polystyrene nanoplastics decrease molting and induce oxidative stress in adult Macrobrachium nipponense. Fish Shellfish Immunol 2022;122:419-25.
125. Li Y, Du X, Jiang Q, Huang Y, Zhao Y. Effects of nanoplastic exposure on the growth performance and molecular characterization of growth-associated genes in juvenile Macrobrachium nipponense. Comp Biochem Physiol C Toxicol Pharmacol 2022;254:109278.
126. Li Y, Liu Z, Jiang Q, Ye Y, Zhao Y. Effects of nanoplastic on cell apoptosis and ion regulation in the gills of Macrobrachium nipponense. Environ Pollut 2022;300:118989.
127. Malafaia G, Nóbrega RH, Luz TMD, Araújo APDC. Shedding light on the impacts of gestational exposure to polystyrene nanoplastics on the reproductive performance of Poecilia reticulata female and on the biochemical response of embryos. J Hazard Mater 2022;427:127873.
128. Trevisan R, Voy C, Chen S, Di Giulio RT. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish. Environ Sci Technol 2019;53:8405-15.
129. Ji Y, Wang C, Wang Y, Fu L, Man M, Chen L. Realistic polyethylene terephthalate nanoplastics and the size- and surface coating-dependent toxicological impacts on zebrafish embryos. Environ Sci: Nano 2020;7:2313-24.
130. Lee WS, Cho H, Kim E, et al. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale 2019;11:3173-85.
131. Xie S, Zhou A, Wei T, et al. Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics. Bull Environ Contam Toxicol 2021;107:640-50.
132. Teng M, Zhao X, Wang C, et al. Polystyrene nanoplastics toxicity to zebrafish: dysregulation of the brain-intestine-microbiota axis. ACS Nano 2022;16:8190-204.
133. Han M, Gao T, Liu G, et al. The effect of a polystyrene nanoplastic on the intestinal microbes and oxidative stress defense of the freshwater crayfish, Procambarus clarkii. Sci Total Environ 2022;833:155722.
134. Filiciotto L, Rothenberg G. Biodegradable plastics: standards, policies, and impacts. ChemSusChem 2021;14:56-72.
135. Ribba L, Lopretti M, Montes de Oca-vásquez G, Batista D, Goyanes S, Vega-baudrit JR. Biodegradable plastics in aquatic ecosystems: latest findings, research gaps, and recommendations. Environ Res Lett 2022;17:033003.
136. Ciriminna R, Pagliaro M. Biodegradable and compostable plastics: a critical perspective on the dawn of their global adoption. ChemistryOpen 2020;9:8-13.
137. Narancic T, Verstichel S, Reddy Chaganti S, et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ Sci Technol 2018;52:10441-52.
138. Scott G. Why degradable polymers? In: Scott G, editor. Degradable polymers. Dordrecht: Springer Netherlands; 2002. p. 1-15.
139. Daglen BC, Tyler DR. Photodegradable plastics: end-of-life design principles. Green Chem Lett Rev 2010;3:69-82.
140. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017;3:25-9.
141. Shlush E, Davidovich-pinhas M. Bioplastics for food packaging. Trends Food Sci Technol 2022;125:66-80.
142. Cucina M, de Nisi P, Tambone F, Adani F. The role of waste management in reducing bioplastic leakage into the environment: a review. Bioresour Technol 2021;337:125459.
143. Yokota K, Mehlrose M. Lake Phytoplankton assemblage altered by irregularly shaped PLA body wash microplastics but not by PS calibration beads. Water 2020;12:2650.
144. Green DS, Jefferson M, Boots B, Stone L. All that glitters is litter? J Hazard Mater 2021;402:124070.
145. Wei XF, Capezza AJ, Cui Y, et al. Millions of microplastics released from a biodegradable polymer during biodegradation/enzymatic hydrolysis. Water Res 2022;211:118068.
146. Hu YL, Qi W, Han F, Shao JZ, Gao JQ. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 2011;6:3351-9.
147. Clemente Z, Grillo R, Jonsson M, et al. Ecotoxicological evaluation of poly(epsilon-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 2014;14:4911-7.
148. González-pleiter M, Tamayo-belda M, Pulido-reyes G, et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ Sci: Nano 2019;6:1382-92.
149. Zhang X, Xia M, Su X, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J Hazard Mater 2021;413:125321.
150. Tong H, Zhong X, Duan Z, et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: Formation, aging factors, and toxicity. Sci Total Environ 2022;833:155275.