REFERENCES
1. Jéquier E, Constant F. Water as an essential nutrient: the physiological basis of hydration. Eur J Clin Nutr 2010;64:115-23.
4. . UN Environment. Global chemicals outlook II from legacies to innovative solutions: implementing the 2030 agenda for sustainable development. United Nations Environment Programme; 2019.
5. Kümmerer K, Dionysiou DD, Olsson O, Fatta-Kassinos D. A path to clean water. Science 2018;361:222-4.
6. Yang H, Wright JA, Gundry SW. Water accessibility: boost water safety in rural China. Nature 2012;484:318.
7. Calabrese EJ. Ethical failings: the problematic history of cancer risk assessment. Environ Res 2021;193:110582.
8. Calabrese EJ. LNT and cancer risk assessment: Its flawed foundations part 2: how unsound LNT science became accepted. Environ Res 2021;197:111041.
9. Calabrese EJ. The linear No-Threshold (LNT) dose response model: a comprehensive assessment of its historical and scientific foundations. Chem Biol Interact 2019;301:6-25.
10. Calabrese EJ, Priest ND, Kozumbo WJ. Thresholds for carcinogens. Chem Biol Interact 2021;341:109464.
11. Tsatsakis A. . Toxicological risk assessment and multi-system health impacts from exposure. Elsevier; 2021.
12. Tsatsakis AM, Vassilopoulou L, Kovatsi L, et al. The dose response principle from philosophy to modern toxicology: the impact of ancient philosophy and medicine in modern toxicology science. Toxicol Rep 2018;5:1107-13.
13. Agathokleous E, Calabrese EJ. Hormesis: the dose response for the 21st century: the future has arrived. Toxicology 2019;425:152249.
14. Leak RK, Calabrese EJ, Kozumbo WJ, et al. Enhancing and extending biological performance and resilience. Dose Response 2018;16:1559325818784501.
15. Erofeeva EA. Environmental hormesis of non-specific and specific adaptive mechanisms in plants. Sci Total Environ 2022;804:150059.
17. Carvalho MEA, Castro PRC, Azevedo RA. Hormesis in plants under Cd exposure: from toxic to beneficial element? J Hazard Mater 2020;384:121434.
18. Shahid M, Niazi NK, Rinklebe J, Bundschuh J, Dumat C, Pinelli E. Trace elements-induced phytohormesis: a critical review and mechanistic interpretation. Crit Rev Environ Sci Technol 2020;50:1984-2015.
19. Agathokleous E, Calabrese EJ. A global environmental health perspective and optimisation of stress. Sci Total Environ 2020;704:135263.
20. Agathokleous E, Calabrese EJ. Hormesis can enhance agricultural sustainability in a changing world. Glob Food Secur 2019;20:150-5.
21. Costantini D, Metcalfe NB, Monaghan P. Ecological processes in a hormetic framework. Ecol Lett 2010;13:1435-47.
22. Costantini D, Monaghan P, Metcalfe NB. Prior hormetic priming is costly under environmental mismatch. Biol Lett 2014;10:20131010.
23. Costantini D, Borremans B. The linear no-threshold model is less realistic than threshold or hormesis-based models: an evolutionary perspective. Chem Biol Interact 2019;301:26-33.
25. Calabrese EJ, Kozumbo WJ. The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res 2021;167:105526.
26. Kozumbo WJ, Calabrese EJ. Two decades (1998-2018) of research Progress on Hormesis: advancing biological understanding and enabling novel applications. J Cell Commun Signal 2019;13:273-5.
27. Calabrese EJ. Hormesis commonly observed in the assessment of aneuploidy in yeast. Environ Pollut 2017;225:713-28.
28. Cedergreen N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO. The occurrence of hormesis in plants and algae. Dose Response 2006;5:150-62.
29. Moore MN, Shaw JP, Pascoe C, Beesley A, Viarengo A, Lowe DM. Anti-oxidative hormetic effects of cellular autophagy induced by nutrient deprivation in a molluscan animal model. Mar Environ Res 2020;156:104903.
30. Laughlin RB Jr, Ng J, Guard HE. Hormesis: a response to low environmental concentrations of petroleum hydrocarbons. Science 1981;211:705-7.
31. Stebbing ARD. The effects of low metal levels on a clonal hydroid. J Mar Biol Ass 1976;56:977-94.
32. Stebbing A. Hormesis—stimulation of colony growth in
33. Stebbing A. Hormesis — the stimulation of growth by low levels of inhibitors. Sci Total Environ 1982;22:213-34.
34. Agathokleous E, Feng Z, Iavicoli I, Calabrese EJ. The two faces of nanomaterials: a quantification of hormesis in algae and plants. Environ Int 2019;131:105044.
35. Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Micro/nanoplastics effects on organisms: a review focusing on 'dose'. J Hazard Mater 2021;417:126084.
36. Sun T, Zhan J, Li F, Ji C, Wu H. Evidence-based meta-analysis of the genotoxicity induced by microplastics in aquatic organisms at environmentally relevant concentrations. Sci Total Environ 2021;783:147076.
37. Sun T, Zhan J, Li F, Ji C, Wu H. Effect of microplastics on aquatic biota: a hormetic perspective. Environ Pollut 2021;285:117206.
38. Li J, Li W, Min Z, Zheng Q, Han J, Li P. Physiological, biochemical and transcription effects of roxithromycin before and after phototransformation in
39. Mao Y, Yu Y, Ma Z, et al. Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress. Ecotoxicol Environ Saf 2021;222:112496.
40. Pikula K, Kirichenko K, Vakhniuk I, et al. Aquatic toxicity of particulate matter emitted by five electroplating processes in two marine microalgae species. Toxicol Rep 2021;8:880-7.
41. Cantalupi A, Maraschi F, Pretali L, et al. Glucocorticoids in freshwaters: degradation by solar light and environmental toxicity of the photoproducts. Int J Environ Res Public Health 2020;17:8717.
42. Zhang M, Steinman AD, Xue Q, Zhao Y, Xu Y, Xie L. Effects of erythromycin and sulfamethoxazole on
43. Qu H, Ma R, Barrett H, et al. How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (
44. Song C, Liu Z, Wang C, Li S, Kitamura Y. Different interaction performance between microplastics and microalgae: the bio-elimination potential of
45. Guo J, Ma Z, Peng J, et al. Transcriptomic analysis of
46. Cai H, Liang J, Ning XA, Lai X, Li Y. Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J Environ Sci (China) 2020;91:199-208.
47. Chae Y, Kim D, An YJ. Effects of micro-sized polyethylene spheres on the marine microalga
48. Chamsi O, Pinelli E, Faucon B, et al. Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener. Ann Limnol - Int J Lim 2019;55:3.
49. Zhang Y, Calabrese EJ, Zhang J, Gao D, Qin M, Lin Z. A trigger mechanism of herbicides to phytoplankton blooms: from the standpoint of hormesis involving cytochrome
50. Guo X, Liu M, Zhong H, et al. Potential of
51. Guo X, Zhu L, Zhong H, Li P, Zhang C, Wei D. Response of antibiotic and heavy metal resistance genes to tetracyclines and copper in substrate-free hydroponic microcosms with
52. González-Doncel M, Fernández Torija C, Pablos MV, García Hortigüela P, López Arévalo M, Beltrán EM. The role of PFOS on triclosan toxicity to two model freshwater organisms. Environ Pollut 2020;263:114604.
53. Li Y, Liu Z, Li M, et al. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile
54. Liu Y, Guo R, Tang S, et al. Single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 on the feeding activity of
55. Cesar-Ribeiro C. Chemical contents of disposed light sticks affect the physiology of rocky crab
56. Bordin ER, Cesar Munhoz R, Panicio PP, Freitas AM. Transgenerational effects of environmentally relevant concentrations of atrazine and glyphosate herbicides, isolated and in mixture, to freshwater microcrustacean
57. Wang P, Ng QX, Zhang B, et al. Employing multi-omics to elucidate the hormetic response against oxidative stress exerted by nC60 on
58. Xu K, Li Z, Juneau P, et al. Toxic and protective mechanisms of cyanobacterium
59. Wu S, Ji X, Li X, et al. Mutual impacts and interactions of antibiotic resistance genes, microcystin synthetase genes, graphene oxide, and
60. Wan Q, Li J, Chen Y. Comparative growth and cellular responses of toxigenic
61. Zuo S, Yang H, Jiang X, Ma Y. Magnetic Fe3O4 nanoparticles enhance cyanobactericidal effect of allelopathic p-hydroxybenzoic acid on
62. Biswas S, Bellare J. Adaptive mechanisms induced by sparingly soluble mercury sulfide (HgS) in zebrafish: behavioural and proteomics analysis. Chemosphere 2021;270:129438.
63. Constantine LA, Green JW, Schneider SZ. Ibuprofen: fish short-term reproduction assay with Zebrafish (
64. Ding J, Zhang S, Razanajatovo RM, Zou H, Zhu W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (
65. Ding Y, Yang Y, Chen J, Chen H, Wu Y, Jin L. Toxic effects of ZnSe/ZnS quantum dots on the reproduction and genotoxiticy of rare minnow (
66. Fan X, Hou T, Jia J, Tang K, Wei X, Wang Z. Discrepant dose responses of bisphenol A on oxidative stress and DNA methylation in grass carp ovary cells. Chemosphere 2020;248:126110.
67. Han Y, Ma Y, Yao S, Zhang J, Hu C.
68. Jin M, Dang J, Paudel YN, et al. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish. Sci Total Environ 2021;776:145963.
69. Pandelides Z, Thornton C, Lovitt KG, et al. Developmental exposure to Δ9-tetrahydrocannabinol (THC) causes biphasic effects on longevity, inflammation, and reproduction in aged zebrafish (
70. Alkimin GD, Santos J, Soares AMVM, Nunes B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species
71. Liu Y, Pang Y, Yang L, Ning S, Wang D, Wu Z. Responses of
72. Peres L, Della Vechia J, Cruz C. Hormesis effect of herbicides subdoses on submerged macrophytes in microassay conditions. Planta daninha 2017:35.
73. Di Baccio D, Pietrini F, Bertolotto P, et al. Response of
74. Farooq N, Abbas T, Tanveer A, et al. Differential hormetic response of fenoxaprop-p-Ethyl resistant and susceptible
75. Hu H, Zhou Q, Li X, et al. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via
76. Liu F, Lu Z, Wu H, Ji C. Dose-dependent effects induced by cadmium in polychaete
77. Zhan J, Wang S, Li F, Ji C, Wu H. Dose-dependent responses of metabolism and tissue injuries in clam
78. Xu H, Cao W, Sun H, et al. Dose-dependent effects of Di-(2-Ethylhexyl) phthalate (DEHP) in mussel
79. Vera MS, Trinelli MA. First evaluation of the periphyton recovery after glyphosate exposure. Environ Pollut 2021;290:117998.
80. Mao Y, Ai H, Chen Y, et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere 2018;208:59-68.
81. Ianna ML, Reichelt-Brushett A, Howe PL, Brushett D. Application of a behavioural and biochemical endpoint in ecotoxicity testing with
82. Howe PL, Reichelt-Brushett AJ, Clark MW. Development of a chronic, early life-stage sub-lethal toxicity test and recovery assessment for the tropical zooxanthellate sea anemone
83. Svigruha R, Fodor I, Padisak J, Pirger Z. Progestogen-induced alterations and their ecological relevance in different embryonic and adult behaviours of an invertebrate model species, the great pond snail (
84. Nong QY, Liu YA, Qin LT, et al. Toxic mechanism of three azole fungicides and their mixture to green alga
85. Agathokleous E, Barceló D, Calabrese EJ. US EPA: is there room to open a new window for evaluating potential sub-threshold effects and ecological risks? Environ Pollut 2021;284:117372.
86. Calabrese EJ, Agathokleous E, Kozumbo WJ, Stanek EJ 3rd, Leonard D. Estimating the range of the maximum hormetic stimulatory response. Environ Res 2019;170:337-43.