REFERENCES

1. Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov. 2023;22:917-34.

2. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7:13.

3. Birnkrant DJ, Bello L, Butterfield RJ, et al. Cardiorespiratory management of Duchenne muscular dystrophy: emerging therapies, neuromuscular genetics, and new clinical challenges. Lancet Respir Med. 2022;10:403-20.

4. Evans WJ, Hellerstein M, Butterfield RJ, et al. Reductions in functional muscle mass and ability to ambulate in Duchenne muscular dystrophy from ages 4 to 24 years. J Physiol. 2024;602:4929-39.

5. Himič V, Davies KE. Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. Eur J Hum Genet. 2021;29:1369-76.

6. Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol. 2019;15:373-86.

7. Duchateau J, Enoka RM. Distribution of motor unit properties across human muscles. J Appl Physiol. 2022;132:1-13.

8. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020;12:e1462.

9. Irving M. Regulation of contraction by the thick filaments in skeletal muscle. Biophys J. 2017;113:2579-94.

10. Glancy B, Balaban RS. Energy metabolism design of the striated muscle cell. Physiol Rev. 2021;101:1561-607.

11. Sica RE, McComas AJ. The neural hypothesis of muscular dystrophy-a review of recent experimental evidence with particular reference to the Duchenne form. Can J Neurol Sci. 1978;5:189-97.

12. Bateson DS, Parry DJ. Motor units in a fast-twitch muscle of normal and dystrophic mice. J Physiol. 1983;345:515-23.

13. Fujimoto T, Mori M, Tonosaki M, et al. Characterization of dystrophin Dp71 expression and interaction partners in embryonic brain development: implications for duchenne/becker muscular dystrophy. Mol Neurobiol. ;2025:1-17.

14. Ng SY, Ljubicic V. Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: impacts, challenges, and opportunities. EBioMedicine. 2020;61:103032.

15. Lovering RM, Iyer SR, Edwards B, Davies KE. Alterations of neuromuscular junctions in Duchenne muscular dystrophy. Neurosci Lett. 2020;737:135304.

16. Ganassi M, Zammit PS. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: expanding the portfolio of satellite cell-opathies. Eur J Transl Myol. 2022:32.

17. Mareedu S, Million ED, Duan D, Babu GJ. Abnormal calcium handling in Duchenne muscular dystrophy: mechanisms and potential therapies. Front Physiol. 2021;12:647010.

18. Gaglianone RB, Santos AT, Bloise FF, et al. Reduced mitochondrial respiration and increased calcium deposits in the EDL muscle, but not in soleus, from 12-week-old dystrophic mdx mice. Sci Rep. 2019;9:1986.

19. Hamm SE, Fathalikhani DD, Bukovec KE, et al. Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice. Mol Ther Methods Clin Dev. 2021;21:144-60.

20. Winter D. Biomechanics and motor control of human movement. 4th ed. John Wiley and Sons; 2009. p. 384.

21. Fitts RH, McDonald KS, Schluter JM. The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern. J Biomech. 1991;24:111-22.

22. Kornegay JN, Childers MK, Bogan DJ, et al. The paradox of muscle hypertrophy in muscular dystrophy. Phys Med Rehabil Clin N Am. 2012;23:149-72.

23. Ramli AA, Liu X, Berndt K, et al. Gait characterization in Duchenne muscular dystrophy (DMD) using a single-sensor accelerometer: classical machine learning and deep learning approaches. Sensors. 2024;24:1123.

24. Gaudreault N, Gravel D, Nadeau S, Houde S, Gagnon D. Gait patterns comparison of children with Duchenne muscular dystrophy to those of control subjects considering the effect of gait velocity. Gait Posture. 2010;32:342-7.

25. Lott DJ, Taivassalo T, Senesac CR, et al. Walking activity in a large cohort of boys with Duchenne muscular dystrophy. Muscle Nerve. 2021;63:192-8.

26. Nair KS, Lott DJ, Forbes SC, et al. Step activity monitoring in boys with Duchenne muscular dystrophy and its correlation with magnetic resonance measures and functional performance. J Neuromuscul Dis. 2022;9:423-36.

27. McDonald CM, Henricson EK, Abresch RT, et al. PTC124-GD-007-DMD study group. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve. 2013;48:343-56.

28. Pascual-Morena C, Lucerón-Lucas-Torres M, Martínez-García I, Rodríguez-Gutiérrez E, Patiño-Cardona S, Sequí-Domínguez I. Efficacy and safety of vamorolone in Duchenne muscular dystrophy: a systematic review. Paediatr Drugs. 2024;26:695-707.

29. Muntoni F, Signorovitch J, Sajeev G, et al. PRO-DMD-01 study investigators; Association Française contre les Myopathies; UK NorthStar Clinical Network; ImagingDMD investigators; cTAP. Meaningful changes in motor function in Duchenne muscular dystrophy (DMD): a multi-center study. PLoS One. 2024;19:e0304984.

30. Blaauw B, Agatea L, Toniolo L, et al. Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. J Appl Physiol. 2010;108:105-11.

31. Baumann CW, Ingalls CP, Lowe DA. Mechanisms of weakness in Mdx muscle following in vivo eccentric contractions. J Muscle Res Cell Motil. 2022;43:63-72.

32. Tegeler CJ, Grange RW, Bogan DJ, et al. Eccentric contractions induce rapid isometric torque drop in dystrophin-deficient dogs. Muscle Nerve. 2010;42:130-2.

33. Hu X, Pickle NT, Grabowski AM, Silverman AK, Blemker SS. Muscle eccentric contractions increase in downhill and high-grade uphill walking. Front Bioeng Biotechnol. 2020;8:573666.

34. Hu X, Blemker SS. Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy. Muscle Nerve. 2015;52:174-82.

35. Sperringer JE, Grange RW. In vitro assays to determine skeletal muscle physiologic function. In: Kyba M, editor. Skeletal muscle regeneration in the mouse. New York: Springer; 2016. pp. 271-91.

36. Kornegay JN, Bogan JR, Bogan DJ, et al. Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome. 2012;23:85-108.

37. Birch SM, Lawlor MW, Conlon TJ, et al. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med. 2023;15:eabo1815.

38. Kodippili K, Hakim CH, Burke MJ, et al. SERCA2a overexpression improves muscle function in a canine Duchenne muscular dystrophy model. Mol Ther Methods Clin Dev. 2024;32:101268.

39. Childers MK, Grange RW, Kornegay JN. In vivo canine muscle function assay. J Vis Exp. ;2011:2623.

40. Childers MK, Okamura CS, Bogan DJ, et al. Eccentric contraction injury in dystrophic canine muscle. Arch Phys Med Rehabil. 2002;83:1572-78.

41. Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: preparations, protocols, and mechanisms. J Gen Physiol. 2023:155.

42. Maxwell MN, Marullo AL, Valverde-Pérez E, Slyne AD, Murphy BT, O’Halloran KD. Chronic N-acetyl cysteine treatment does not improve respiratory system performance in the mdx mouse model of Duchenne muscular dystrophy. Exp Physiol. 2024;109:1370-84.

43. Russell AJ, DuVall M, Barthel B, et al. Modulating fast skeletal muscle contraction protects skeletal muscle in animal models of Duchenne muscular dystrophy. J Clin Invest. 2023:133.

44. Hamm SE, Yuan C, McQueen LF, et al. Prolonged voluntary wheel running reveals unique adaptations in mdx mice treated with microdystrophin constructs ± the nNOS-binding site. Front Physiol. 2023;14:1166206.

45. García-Castañeda M, Michelucci A, Zhao N, Malik S, Dirksen RT. Postdevelopmental knockout of orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy. J Gen Physiol. 2022:154.

46. Lindsay A, Larson AA, Verma M, Ervasti JM, Lowe DA. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle. J Appl Physiol. 2019;126:363-75.

47. Addinsall AB, Forgan LG, McRae NL, et al. Treatment of dystrophic mdx mice with an ADAMTS-5 specific monoclonal antibody increases the ex vivo strength of isolated fast twitch hindlimb muscles. Biomolecules. 2020;10:416.

48. Ramos JN, Hollinger K, Bengtsson NE, Allen JM, Hauschka SD, Chamberlain JS. Development of novel micro-dystrophins with enhanced functionality. Mol Ther. 2019;27:623-35.

49. Monceau A, Moutachi D, Lemaitre M, et al. Dystrophin restoration after adeno-associated virus U7-mediated dmd exon skipping is modulated by muscular exercise in the severe D2-mdx Duchenne muscular dystrophy murine model. Am J Pathol. 2022;192:1604-18.

50. Hakim CH, Yang HT, Burke MJ, et al. Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber-type switch in Duchenne muscular dystrophy dogs. Dis Model Mech. 2021:14.

51. Riddell DO, Hildyard JCW, Harron RCM, et al. Longitudinal assessment of skeletal muscle functional mechanics in the DE50-MD dog model of Duchenne muscular dystrophy. Dis Model Mech. 2023;16:dmm050395.

52. Bukovec KE, Hu X, Borkowski M, Jeffery D, Blemker SS, Grange RW. A novel ex vivo protocol to mimic human walking gait: implications for Duchenne muscular dystrophy. J Appl Physiol. 2020;129:779-91.

53. Benemei S, Gatto F, Boni L, Pane M. “If you cannot measure it, you cannot improve it”. Outcome measures in Duchenne muscular dystrophy: current and future perspectives. Acta Neurol Belg. 2024; doi: 10.1007/s13760-024-02600-2.

Rare Disease and Orphan Drugs Journal
ISSN 2771-2893 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/