REFERENCES

1. Platt FM, D'Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers 2018;4:27.

2. Saito S, Ohno K, Sakuraba H. Fabry-database.org: database of the clinical phenotypes, genotypes and mutant α-galactosidase a structures in Fabry disease. J Hum Genet 2011;56:467-8.

3. Effraimidis G, Rasmussen ÅK, Dunoe M, et al. Systematic cascade screening in the Danish Fabry disease centre: 20 years of a national single-centre experience. PLoS One 2022;17:e0277767.

4. Bertoldi G, Caputo I, Driussi G, et al. Biochemical mechanisms beyond glycosphingolipid accumulation in Fabry disease: might they provide additional therapeutic treatments? J Clin Med 2023;12:2063.

5. Izhar R, Borriello M, La Russa A, et al. Fabry disease in women: genetic basis, available biomarkers, and clinical manifestations. Genes 2023;15:37.

6. Faro DC, Losi V, Rodolico MS, et al. Sex differences in anderson-Fabry cardiomyopathy: clinical, genetic, and imaging analysis in women. Genes 2023;14:1804.

7. Eng CM, Banikazemi M, Gordon RE, et al. A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 2001;68:711-22.

8. Schiffmann R, Kopp JB, Austin HA 3rd, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 2001;285:2743-9.

9. Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry's disease with the pharmacologic chaperone migalastat. N Engl J Med 2016;375:545-55.

10. Li Q, Wang J, Tian M, et al. Clinical features and enzyme replacement therapy in 10 children with Fabry disease. Front Pediatr 2023;11:1084336.

11. Morand O, Johnson J, Walter J, et al. Symptoms and quality of life in patients with Fabry disease: results from an international patient survey. Adv Ther 2019;36:2866-80.

12. Politei JM, Durand C, Schenone AB. Small Fiber neuropathy in Fabry disease: a review of pathophysiology and treatment. J Inborn Errors Metab Scr 2016;4:232640981666135.

13. Üçeyler N, Kahn AK, Kramer D, et al. Impaired small fiber conduction in patients with Fabry disease: a neurophysiological case-control study. BMC Neurol 2013;13:47.

14. Scott LJ, Griffin JW, Luciano C, et al. Quantitative analysis of epidermal innervation in Fabry disease. Neurology 1999;52:1249-54.

15. Üçeyler N, He L, Schönfeld D, et al. Small fibers in Fabry disease: baseline and follow-up data under enzyme replacement therapy. J Peripher Nerv Syst 2011;16:304-14.

16. Arnold R, Pianta TJ, Issar T, et al. Peripheral neuropathy: an important contributor to physical limitation and morbidity in stages 3 and 4 chronic kidney disease. Nephrol Dial Transplant 2022;37:713-9.

17. Burlina AP, Sims KB, Politei JM, et al. Early diagnosis of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain: the report of an expert panel. BMC Neurol 2011;11:61.

18. Schiffmann R, Floeter MK, Dambrosia JM, et al. Enzyme replacement therapy improves peripheral nerve and sweat function in Fabry disease. Muscle Nerve 2003;28:703-10.

19. Maag R, Binder A, Maier C, et al. Detection of a characteristic painful neuropathy in Fabry disease: a pilot study. Pain Med 2008;9:1217-23.

20. Hilz MJ. Evaluation of peripheral and autonomic nerve function in Fabry disease. Acta Paediatr Suppl 2002;91:38-42.

21. Møller AT, Bach FW, Feldt-Rasmussen U, et al. Autonomic skin responses in females with Fabry disease. J Peripher Nerv Syst 2009;14:159-64.

22. Dutra-Clarke M, Tapia D, Curtin E, et al. Variable clinical features of patients with Fabry disease and outcome of enzyme replacement therapy. Mol Genet Metab Rep 2021;26:100700.

23. Bar N, Karaa A, Kiser K, Kuo B, Zar-Kessler C. Gastrointestinal sensory neuropathy and dysmotility in Fabry disease: presentations and effect on patient's quality of life. Clin Transl Gastroenterol 2023;14:e00633.

24. Hopkin RJ, Bissler J, Banikazemi M, et al. Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Pediatr Res 2008;64:550-5.

25. Burand AJ Jr, Stucky CL. Fabry disease pain: patient and preclinical parallels. Pain 2021;162:1305-21.

26. Winter Y, Hilz M, Beuschlein F, et al. Screening for health-related quality of life and its determinants in Fabry disease: a cross-sectional multicenter study. Mol Genet Metab 2023;140:107692.

27. Körver S, Geurtsen GJ, Hollak CEM, et al. Depressive symptoms in Fabry disease: the importance of coping, subjective health perception and pain. Orphanet J Rare Dis 2020;15:28.

28. Radulescu D, Crisan D, Militaru V, et al. Gastrointestinal manifestations and treatment options in Fabry disease patients. a systematic review. J Gastrointestin Liver Dis 2022;31:98-106.

29. Üçeyler N, Ganendiran S, Kramer D, Sommer C. Characterization of pain in Fabry disease. Clin J Pain 2014;30:915-20.

30. Rosa Neto NS, Bento JCB, Caparbo VF, Pereira RMR. Increased serum interleukin-6 and tumor necrosis factor alpha levels in fabry disease: correlation with disease burden. Clinics 2021;76:e2643.

31. Laffer B, Lenders M, Ehlers-Jeske E, Heidenreich K, Brand E, Köhl J. Complement activation and cellular inflammation in Fabry disease patients despite enzyme replacement therapy. Front Immunol 2024;15:1307558.

32. Üçeyler N, Urlaub D, Mayer C, Uehlein S, Held M, Sommer C. Tumor necrosis factor-α links heat and inflammation with Fabry pain. Mol Genet Metab 2019;127:200-6.

33. Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA 2008;105:2812-7.

34. Choi L, Vernon J, Kopach O, et al. The Fabry disease-associated lipid Lyso-Gb3 enhances voltage-gated calcium currents in sensory neurons and causes pain. Neurosci Lett 2015;594:163-8.

35. Nowak A, Beuschlein F, Sivasubramaniam V, Kasper D, Warnock DG. Lyso-Gb3 associates with adverse long-term outcome in patients with Fabry disease. J Med Genet 2022;59:287-93.

36. Bichet DG, Aerts JM, Auray-Blais C, et al. Assessment of plasma lyso-Gb3 for clinical monitoring of treatment response in migalastat-treated patients with Fabry disease. Genet Med 2021;23:192-201.

37. de Greef BT, Hoeijmakers JG, Wolters EE, et al. No Fabry disease in patients presenting with isolated small fiber neuropathy. PLoS One 2016;11:e0148316.

38. Magg B, Riegler C, Wiedmann S, Heuschmann P, Sommer C, Üçeyler N. Self-administered version of the Fabry-associated pain questionnaire for adult patients. Orphanet J Rare Dis 2015;10:113.

39. Üçeyler N, Magg B, Thomas P, Wiedmann S, Heuschmann P, Sommer C. A comprehensive Fabry-related pain questionnaire for adult patients. Pain 2014;155:2301-5.

40. Interdisziplinäre leitlinie für die diagnose und therapie des morbus Fabry. 2022. Available from: https://dgn.org/leitlinie/interdisziplinare-leitlinie-fur-die-diagnose-und-therapie-des-morbus-fabry [Last accessed on 2 Jul 2024].

41. Ezgu F, Alpsoy E, Bicik Bahcebasi Z, et al. Expert opinion on the recognition, diagnosis and management of children and adults with Fabry disease: a multidisciplinary Turkey perspective. Orphanet J Rare Dis 2022;17:90.

42. Wanner C, Arad M, Baron R, et al. European expert consensus statement on therapeutic goals in Fabry disease. Mol Genet Metab 2018;124:189-203.

43. Müntze J, Lau K, Cybulla M, et al. Patient reported quality of life and medication adherence in Fabry disease patients treated with migalastat: a prospective, multicenter study. Mol Genet Metab 2023;138:106981.

44. Hopkin RJ, Cabrera GH, Jefferies JL, et al. Clinical outcomes among young patients with Fabry disease who initiated agalsidase beta treatment before 30 years of age: an analysis from the Fabry registry. Mol Genet Metab 2023;138:106967.

45. Hilz MJ, Brys M, Marthol H, Stemper B, Dütsch M. Enzyme replacement therapy improves function of C-, Aδ-, and Aβ-nerve fibers in Fabry neuropathy. Neurology 2004;62:1066-72.

46. Sasa H, Nagao M, Kino K. Safety and effectiveness of enzyme replacement therapy with agalsidase alfa in patients with Fabry disease: post-marketing surveillance in Japan. Mol Genet Metab 2019;126:448-59.

47. Lenders M, Nordbeck P, Kurschat C, et al. Treatment of Fabry disease management with migalastat-outcome from a prospective 24 months observational multicenter study (FAMOUS). Eur Heart J Cardiovasc Pharmacother 2022;8:272-81.

48. Riccio E, Zanfardino M, Ferreri L, et al. Switch from enzyme replacement therapy to oral chaperone migalastat for treating Fabry disease: real-life data. Eur J Hum Genet 2020;28:1662-8.

49. Lee K, Jin X, Zhang K, et al. A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 2003;13:305-13.

50. Hoffmann B, Garcia de Lorenzo A, Mehta A, Beck M, Widmer U, Ricci R. FOS European Investigators. Effects of enzyme replacement therapy on pain and health related quality of life in patients with Fabry disease: data from FOS (Fabry Outcome Survey). J Med Genet 2005;42:247-52.

51. Sergi B, Conti G, Paludetti G. Inner ear involvement in Anderson-Fabry disease: long-term follow-up during enzyme replacement therapy. Acta Otorhinolaryngol Ital 2010;30:87-93.

52. Hughes DA, Barba Romero MÁ, Hollak CE, Giugliani R, Deegan PB. Response of women with Fabry disease to enzyme replacement therapy: comparison with men, using data from FOS-the Fabry outcome survey. Mol Genet Metab 2011;103:207-14.

53. Tsuboi K, Yamamoto H. Efficacy and safety of enzyme-replacement-therapy with agalsidase alfa in 36 treatment-naïve Fabry disease patients. BMC Pharmacol Toxicol 2017;18:43.

54. Germain DP, Giugliani R, Hughes DA, et al. Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase a activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J Rare Dis 2012;7:91.

55. Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet 2017;54:288-96.

56. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015;14:162-73.

57. Politei JM, Bouhassira D, Germain DP, et al. Pain in Fabry disease: practical recommendations for diagnosis and treatment. CNS Neurosci Ther 2016;22:568-76.

58. Ohshima T, Murray GJ, Swaim WD, et al. α-galactosidase a deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA 1997;94:2540-4.

59. Hofmann L, Hose D, Grießhammer A, et al. Characterization of small fiber pathology in a mouse model of Fabry disease. Elife 2018;7:e39300.

60. Spitzel M, Wagner E, Breyer M, et al. Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of Fabry disease. Cells 2022;11:1730.

61. Choconta JL, Labi V, Dumbraveanu C, Kalpachidou T, Kummer KK, Kress M. Age-related neuroimmune signatures in dorsal root ganglia of a Fabry disease mouse model. Immun Ageing 2023;20:22.

62. Lakomá J, Rimondini R, Ferrer Montiel A, Donadio V, Liguori R, Caprini M. Increased expression of Trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model. Mol Pain 2016;12:174480691666372.

63. Waltz TB, Burand AJ Jr, Sadler KE, Stucky CL. Sensory-specific peripheral nerve pathology in a rat model of Fabry disease. Neurobiol Pain 2021;10:100074.

64. Miller JJ, Aoki K, Moehring F, et al. Neuropathic pain in a Fabry disease rat model. JCI Insight 2018;3:99171.

65. Talagas M, Lebonvallet N, Leschiera R, et al. Keratinocytes communicate with sensory neurons via synaptic-like contacts. Ann Neurol 2020;88:1205-19.

66. Mikesell AR, Isaeva E, Schulte ML, et al. Keratinocyte piezo1 drives paclitaxel-induced mechanical hypersensitivity. bioRxiv 2023.

67. Erbacher C, Britz S, Dinkel P, et al. Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit. Elife 2024;13:e77761.

68. Waltz TB, Chao D, Prodoehl EK, et al. Schwann cell release of p11 induces sensory neuron hyperactivity in Fabry disease. bioRxiv 2023.

69. Yogasundaram H, Nikhanj A, Putko BN, et al. Elevated inflammatory plasma biomarkers in patients with Fabry disease: a critical link to heart failure with preserved ejection fraction. J Am Heart Assoc 2018;7:e009098.

70. Kanack AJ, Aoki K, Tiemeyer M, Dahms NM. Platelet and myeloid cell phenotypes in a rat model of Fabry disease. FASEB J 2021;35:e21818.

71. Willemen HLDM, Santos Ribeiro PS, Broeks M, et al. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023;4:101265.

72. van der Vlist M, Raoof R, Willemen HLDM, et al. Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 2022;110:613-26.e9.

73. Palada V, Siddiqah Ahmed A, Hugo A, Radojčić MR, Svensson CI, Kosek E. Expression of mitochondrial TSPO and FAM173B is associated with inflammation and symptoms in patients with painful knee osteoarthritis. Rheumatology 2021;60:1724-33.

74. Chévrier M, Brakch N, Céline L, et al. Autophagosome maturation is impaired in Fabry disease. Autophagy 2010;6:589-99.

75. Ivanova MM, Changsila E, Iaonou C, Goker-Alpan O. Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases. PLoS One 2019;14:e0210617.

76. Marenco M, Segatto M, Sacchetti M, Mangiantini P, Giovannetti F, Plateroti R. Autophagy-lysosome pathway alteration in ocular surface manifestations in Fabry disease patients. Orphanet J Rare Dis 2022;17:291.

77. Nelson MP, Tse TE, O'Quinn DB, et al. Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase a-deficient mice. Acta Neuropathol Commun 2014;2:20.

78. Chen H, Hu Y, Xie K, et al. Effect of autophagy on allodynia, hyperalgesia and astrocyte activation in a rat model of neuropathic pain. Int J Mol Med 2018;42:2009-19.

79. Liu K, Yang Y, Zhou F, Xiao Y, Shi L. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy and relieves hyperalgesia in diabetic rats. Neuroreport 2020;31:644-9.

80. Zhang E, Yi MH, Ko Y, et al. Expression of LC3 and Beclin 1 in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Brain Res 2013;1519:31-9.

81. Chen W, Lu Z. Upregulated TLR3 promotes neuropathic pain by regulating autophagy in rat with L5 spinal nerve ligation model. Neurochem Res 2017;42:634-43.

82. Hehlert P, Zhang W, Göpfert MC. Drosophila mechanosensory transduction. Trends Neurosci 2021;44:323-35.

83. Petersen M, Tenedini F, Hoyer N, Kutschera F, Soba P. Assaying thermo-nociceptive behavior in drosophila larvae. Bio Protoc 2018;8:e2737.

84. Jang W, Oh M, Cho EH, Baek M, Kim C. Drosophila pain sensitization and modulation unveiled by a novel pain model and analgesic drugs. PLoS One 2023;18:e0281874.

85. Braunstein H, Papazian M, Maor G, Lukas J, Rolfs A, Horowitz M. Misfolding of lysosomal α-galactosidase a in a fly model and its alleviation by the pharmacological chaperone migalastat. Int J Mol Sci 2020;21:7397.

86. Bonan CD, Siebel AM. Editorial: zebrafish as a model for pharmacological and toxicological research. Front Pharmacol 2022;13:976970.

87. Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of analgesic drugs on the behavioural responses of larval zebrafish to potentially noxious temperatures. Appl Anim Behav Sci 2017;188:97-105.

88. Prober DA, Zimmerman S, Myers BR, et al. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 2008;28:10102-10.

89. Magalhães FEA, de Sousa CÁPB, Santos SAAR, et al. Adult zebrafish (danio rerio): an alternative behavioral model of formalin-induced nociception. Zebrafish 2017;14:422-9.

90. Costa FV, Rosa LV, Quadros VA, Santos ARS, Kalueff AV, Rosemberg DB. Understanding nociception-related phenotypes in adult zebrafish: behavioral and pharmacological characterization using a new acetic acid model. Behav Brain Res 2019;359:570-8.

91. Elsaid HOA, Furriol J, Blomqvist M, et al. Reduced α-galactosidase a activity in zebrafish (Danio rerio) mirrors distinct features of Fabry nephropathy phenotype. Mol Genet Metab Rep 2022;31:100851.

92. Klein T, Grüner J, Breyer M, et al. Small fibre neuropathy in Fabry disease: a human-derived neuronal in vitro disease model. bioRxiv 2023.

93. Kaneski CR, Hanover JA, Schueler Hoffman UH. Generation of an in vitro model for peripheral neuropathy in Fabry disease using CRISPR-Cas9 in the nociceptive dorsal root ganglion cell line 50B11. Mol Genet Metab Rep 2022;31:100871.

94. Kaneski CR, Hanover JA, Schueler Hoffman UH. Generation of GLA-knockout human embryonic stem cell lines to model peripheral neuropathy in Fabry disease. Mol Genet Metab Rep 2022;33:100914.

95. Klein T, Grüner J, Breyer M, et al. Small fibre neuropathy in Fabry disease: a human-derived neuronal in vitro disease model and pilot data. Brain Commun 2024;6:fcae095.

96. Breyer M, Grüner J, Klein A, et al. In vitro characterization of cells derived from a patient with the GLA variant c.376A>G (p.S126G) highlights a non-pathogenic role in Fabry disease. Mol Genet Metab Rep 2024;38:101029.

97. DeCicco-Skinner KL, Henry GH, Cataisson C, et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp 2014;91:e51312.

98. Do HS, Park SW, Im I, et al. Enhanced thrombospondin-1 causes dysfunction of vascular endothelial cells derived from Fabry disease-induced pluripotent stem cells. EBioMedicine 2020;52:102633.

99. Klug K, Spitzel M, Hans C, et al. Endothelial cell dysfunction and hypoxia as potential mediators of pain in Fabry disease: a human-murine translational approach. Int J Mol Sci 2023;24:15422.

100. Shen JS, Meng XL, Moore DF, et al. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab 2008;95:163-8.

101. Pollmann S, Scharnetzki D, Manikowski D, Lenders M, Brand E. Endothelial dysfunction in Fabry disease is related to glycocalyx degradation. Front Immunol 2021;12:789142.

102. Choi S, Kim JA, Na HY, et al. Globotriaosylceramide induces lysosomal degradation of endothelial KCa3.1 in Fabry disease. Arterioscler Thromb Vasc Biol 2014;34:81-9.

103. Liu PW, Zhang H, Werley CA, et al. A phenotypic screening platform for chronic pain therapeutics using all-optical electrophysiology. Pain 2024;165:922-40.

104. Namer B, Schmidt D, Eberhardt E, et al. Pain relief in a neuropathy patient by lacosamide: Proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine 2019;39:401-8.

Rare Disease and Orphan Drugs Journal
ISSN 2771-2893 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/