REFERENCES
1. Webster, T. J.; Siegel, R. W.; Bizios, R. An in vitro evaluation of nanophase alumina for orthopaedic/dental applications. In LeGeros R. Z.; LeGeros J.P.; editors. Bioceramics Volume 11. Proceedings of the 11th International Symposium on Ceramics in Medicine. 1998 Nov; New York, NY, USA. New York: World Scientific Publishing Co. Pte. Ltd.; 1998. p. 273-6.
2. Webster, T. J.; Siegel, R. W.; Bizios, R. Osteoblast adhesion on nanophase alumina substrates. In Abstract presented at the 24th Annual Meeting of the Society for Biomaterials, San Diego, CA, USA; 1998.
3. Webster, T. J.; Siegel, R. W.; Bizios, R. Nanostructured ceramics and composite materials for orthopaedic-dental implants. US 6270347B1, 2001.
4. Price, R. L.; Waid, M. C.; Haberstroh, K. M.; Webster, T. J. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003, 24, 1877-87.
5. Liu, H.; Webster, T. J. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int. J. Nanomedicine. 2010, 5, 299-313.
6. Webster, T. J.; Smith, T. A. Increased osteoblast function on PLGA composites containing nanophase titania. J. Biomed. Mater. Res. A. 2005, 74, 677-86.
7. Kay, S.; Thapa, A.; Haberstroh, K. M.; Webster, T. J. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue. Eng. 2002, 8, 753-61.
8. Liu, H.; Slamovich, E. B.; Webster, T. J. Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int. J. Nanomedicine. 2006, 1, 541-5.
9. Palin, E.; Liu, H.; Webster, T. J. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 2005, 16, 1828-35.
10. Hickey, D. J.; Ercan, B.; Sun, L.; Webster, T. J. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta. Biomater. 2015, 14, 175-84.
11. Balasundaram, G.; Webster, T. J. An overview of nano-polymers for orthopedic applications. Macromol. Biosci. 2007, 7, 635-42.
12. Webster, T. J.; Ejiofor, J. U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004, 25, 4731-9.
13. Yao, C.; Slamovich, E. B.; Webster, T. J. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res. A. 2008, 85, 157-66.
14. Balasundaram, G.; Yao, C.; Webster, T. J. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J. Biomed. Mater. Res. A. 2008, 84, 447-53.
15. Yao, C.; Webster, T. J. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. J. Nanosci. Nanotechnol. 2006, 6, 2682-92.
16. Yao, C.; Perla, V.; Mckenzie, J. L.; Slamovich, E. B.; Webster, T. J. Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion. J. Biomed. Nanotechnol. 2005, 1, 68-73.
17. Zhang, L.; Webster, T. J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano. Today. 2009, 4, 66-80.
18. Miller, D. C.; Thapa, A.; Haberstroh, K. M.; Webster, T. J. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 2004, 25, 53-61.
19. Khang, D.; Lu, J.; Yao, C.; Haberstroh, K. M.; Webster, T. J. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008, 29, 970-83.
20. Thapa, A.; Miller, D. C.; Webster, T. J.; Haberstroh, K. M. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 2003, 24, 2915-26.
21. Park, G. E.; Pattison, M. A.; Park, K.; Webster, T. J. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 2005, 26, 3075-82.
22. Wang, M.; Favi, P.; Cheng, X.; et al. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta. Biomater. 2016, 46, 256-65.
23. Mohammadi Nasr, S.; Rabiee, N.; Hajebi, S.; et al. Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine. Int. J. Nanomedicine. 2020, 15, 4205-24.
24. Puckett, S. D.; Lee, P. P.; Ciombor, D. M.; Aaron, R. K.; Webster, T. J. Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. Acta. Biomater. 2010, 6, 2352-62.
25. Seil, J. T.; Webster, T. J. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine. 2012, 7, 2767-81.
26. Colon, G.; Ward, B. C.; Webster, T. J. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J. Biomed. Mater. Res. A. 2006, 78, 595-604.
27. Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T. J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomedicine. 2010, 5, 277-83.
28. Puckett, S. D.; Taylor, E.; Raimondo, T.; Webster, T. J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 2010, 31, 706-13.
29. Li, B.; Webster, T. J. Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22-32.
30. Tran, P. A.; Webster, T. J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomedicine. 2011, 6, 1553-8.
31. Taylor, E.; Webster, T. J. Reducing infections through nanotechnology and nanoparticles. Int. J. Nanomedicine. 2011, 6, 1463-73.
32. Ercan, B.; Taylor, E.; Alpaslan, E.; Webster, T. J. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 2011, 22, 295102.
33. Lee, Y. K.; Choi, E. J.; Webster, T. J.; Kim, S. H.; Khang, D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomedicine. 2015, 10, 97-113.
34. McKenzie, J. L.; Waid, M. C.; Shi, R.; Webster, T. J. Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 2004, 25, 1309-17.
35. Lee, S.; Choi, J.; Shin, S.; et al. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta. Biomater. 2011, 7, 2337-44.
36. Rajyalakshmi, A.; Ercan, B.; Balasubramanian, K.; Webster, T. J. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Int. J. Nanomedicine. 2011, 6, 1765-71.
37. Webster, T. J.; Schadler, L. S.; Siegel, R. W.; Bizios, R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue. Eng. 2001, 7, 291-301.
38. Khang, D.; Kim, S. Y.; Liu-Snyder, P.; Palmore, G. T.; Durbin, S. M.; Webster, T. J. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials 2007, 28, 4756-68.
39. Miller, D. C.; Haberstroh, K. M.; Webster, T. J. Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. J. Biomed. Mater. Res. A. 2005, 73, 476-84.
40. Webster, T. J. Nanostructured bacteria-resistant polymer materials. US 11186690B2, 2021.
41. Webster, T. J.; Yao, C. Method for producing nanostructures on a surface of a medical implant. US 20110125263A1, 2011.
42. Webster, T. J.; Perla, V. System and method of attaching soft tissue to an implant. US 18/790,605, 2004.
43. Webster, T. J. Nanostructured Surfaces. US 20230311563A1, 2024.
44. Hickey, D.; Webster, T. J.; Ercan, B. Nanomaterials for the integration of soft into hard tissue. WO 2014190349A2, 2014.
45. GHE: Life expectancy and healthy life expectancy. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy. (accessed 2025-12-3).


