REFERENCES
1. Lee, J.; Kim, M.; Park, S.; Ahn, J.; Kim, I. D. Materials engineering for light-activated gas sensors: insights, advances, and future perspectives. Adv. Mater. 2025, 37, e08204.
2. Bulemo, P. M.; Kim, D. H.; Shin, H.; et al. Selectivity in chemiresistive gas sensors: strategies and challenges. Chem. Rev. 2025, 125, 4111-83.
3. Sharma, A.; Eadi, S. B.; Noothalapati, H.; Otyepka, M.; Lee, H. D.; Jayaramulu, K. Porous materials as effective chemiresistive gas sensors. Chem. Soc. Rev. 2024, 53, 2530-77.
4. Wen, J.; Wang, S.; Feng, J.; et al. Recent progress in polyaniline-based chemiresistive flexible gas sensors: design, nanostructures, and composite materials. J. Mater. Chem. A. 2024, 12, 6190-210.
5. Zhu, L. Y.; Ou, L. X.; Mao, L. W.; Wu, X. Y.; Liu, Y. P.; Lu, H. L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nanomicro. Lett. 2023, 15, 89.
6. Li, Z.; Li, H.; Wu, Z.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 2019, 6, 470-506.
7. Yang, X.; Deng, Y.; Yang, H.; et al. Functionalization of mesoporous semiconductor metal oxides for gas sensing: recent advances and emerging challenges. Adv. Sci. (Weinh). 2022, 10, e2204810.
8. Li, Z.; Tian, E.; Wang, S.; et al. Single-atom catalysts: promotors of highly sensitive and selective sensors. Chem. Soc. Rev. 2023, 52, 5088-134.
9. Ye, X. L.; Lin, S. J.; Zhang, J. W.; et al. Boosting room temperature sensing performances by atomically dispersed pd stabilized via surface coordination. ACS. Sens. 2021, 6, 1103-10.
10. Chu, T.; Rong, C.; Zhou, L.; Mao, X.; Zhang, B.; Xuan, F. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, e2206783.
11. Park, C.; Shin, H.; Jeon, M.; Cho, S. H.; Kim, J.; Kim, I. D. Single-atom catalysts in conductive metal-organic frameworks: enabling reversible gas sensing at room temperature. ACS. Nano. 2024, 18, 26066-75.
12. Lei, G.; Pan, H.; Mei, H.; et al. Emerging single atom catalysts in gas sensors. Chem. Soc. Rev. 2022, 51, 7260-80.
13. Fonseca, J.; Lu, J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS. Catal. 2021, 11, 7018-59.
14. Zhou, L.; Chang, X.; Zheng, W.; Liu, X.; Zhang, J. Single atom Rh-sensitized SnO2 via atomic layer deposition for efficient formaldehyde detection. Chem. Eng. J. 2023, 475, 146300.
15. Zhang, S.; Chang, X.; Zhou, L.; Liu, X.; Zhang, J. Stabilizing single-atom Pt on Fe2O3 nanosheets by constructing oxygen vacancies for ultrafast H2 sensing. ACS. Sens. 2024, 9. , 2101-9.[PMID: 38574240 DOI:10.1021/acssensors.4c00162].
16. Deshmukh, M. A.; Bakandritsos, A.; Zbořil, R. Bimetallic single-atom catalysts for water splitting. Nanomicro. Lett. 2024, 17, 1.
17. Wang, N.; Sun, Q.; Zhang, T.; et al. Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets. J. Am. Chem. Soc. 2021, 143, 6905-14.
18. Xue, Z.; Yan, M.; Yu, X.; et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 2020, 6, 3364-73.
19. Hai, X.; Xi, S.; Mitchell, S.; et al. Publisher correction: scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 331.
20. Luo, W.; Li, Y.; Dong, J.; et al. A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. Angew. Chem. Int. Ed. Engl. 2013, 52, 10505-10.
21. Feng, B.; Wang, Z.; Feng, Y.; et al. Single-atom Au-functionalized mesoporous SnO2 nanospheres for ultrasensitive detection of listeria monocytogenes biomarker at low temperatures. ACS. Nano. 2024, 18, 22888-900.
22. Li, P.; Wang, Z.; Feng, Y.; Feng, B.; Cheng, D.; Wei, J. Synergistic sensitization effects of single-atom gold and cerium dopants on mesoporous SnO2 nanospheres for enhanced volatile sulfur compound sensing. Mater. Horiz. 2024, 11, 3038-47.
23. Liu, B.; Zhang, L.; Luo, Y.; Gao, L.; Duan, G. The dehydrogenation of H-S bond into sulfur species on supported pd single atoms allows highly selective and sensitive hydrogen sulfide detection. Small 2021, 17, e2105643.
24. Shi, X.; Dai, C.; Wang, X.; et al. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.
25. Le, T. D.; Kim, D. S.; Tran, T. V.; et al. Electronic structure engineering of Pt-Ni alloy NPs by coupling of gold single atoms on n-doped carbon for highly efficient oxygen reduction reaction and hydrogen evolution reaction. Small 2024, 20, e2311971.
26. Liu, P.; Zhao, Y.; Qin, R.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-801.
27. Du, M.; Geng, P.; Pei, C.; et al. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202209350.
28. Li, B.; Duan, X.; Zhao, T.; et al. Boosting N2O catalytic decomposition by the synergistic effect of multiple elements in cobalt-based high-entropy oxides. Environ. Sci. Technol. 2024, 58, 2153-61.
29. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature. Chem. 2011, 3, 634-41.
30. Qin, Q.; Liu, N.; Zhang, Y.; et al. The co-enhanced effect of Zn-doping and Ag-loading on the selectivity of a p-type Fe2O3 toward acetone. New. J. Chem. 2023, 47, 15089-98.
31. Zhao, J.; Yi, N.; Ding, X.; et al. In situ laser-assisted synthesis and patterning of graphene foam composites as a flexible gas sensing platform. Chem. Eng. J. 2023, 456.
32. Zhou, F.; Mu, Z.; Yuan, Z.; et al. ppb-Level detection of isopropanol based on porous ZnSnO3/Ag through the synergistic effects of Ag and amorphous nanocube structures. J. Mater. Chem. A. 2023, 11, 22503-11.
33. Luo, W.; Zhao, T.; Li, Y.; et al. A micelle fusion-aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J. Am. Chem. Soc. 2016, 138, 12586-95.
34. Lin, Y.; Zhou, M.; Tai, X.; Li, H.; Han, X.; Yu, J. Analytical transmission electron microscopy for emerging advanced materials. Matter 2021, 4, 2309-39.
35. Chen, Z.; Walsh, A. G.; Zhang, P. Structural analysis of single-atom catalysts by X-ray absorption spectroscopy. Acc. Chem. Res. 2024, 57, 521-32.
36. Sarma, B. B.; Maurer, F.; Doronkin, D. E.; Grunwaldt, J. D. Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem. Rev. 2023, 123, 379-444.
37. Groppo, E.; Rojas-Buzo, S.; Bordiga, S. The role of in situ/operando IR Spectroscopy in unraveling adsorbate-induced structural changes in heterogeneous catalysis. Chem. Rev. 2023, 123, 12135-69.
38. Gunathilake, C.; Soliman, I.; Panthi, D.; et al. A comprehensive review on hydrogen production, storage, and applications. Chem. Soc. Rev. 2024, 53, 10900-69.
39. Nugroho, F. A. A.; Darmadi, I.; Cusinato, L.; et al. Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 2019, 18, 489-95.
40. Luo, J.; Im, J. H.; Mayer, M. T.; et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-6.
41. Xiang, T.; Yi, J. Ultrasensitive and selective hydrogen sensing of SnO2 nanofibers decorated with Pd single atoms. Sensors. Actuat. B-Chem. 2024, 416, 136022.
42. Li, P.; Diao, L.; Liao, X.; Wang, Z.; Feng, Y.; Wei, J. Rapid and selective detection of trace hydrogen by mesoporous SnO2 anchored with Au-Pd dual-atom sensitizers. Nano. Lett. 2025, 25, 8243-50.
43. Xia, Y.; Guo, S.; Yang, L.; et al. Enhanced free-radical generation on MoS2 /Pt by light and water vapor co-activation for selective CO detection with high sensitivity. Adv. Mater. 2023, 35, e2303523.
44. Zhao, F.; Yu, L.; Wang, J.; et al. Metal-organic framework-derived Au-doped In2O3 nanotubes for monitoring CO at the ppb level. ACS. Sens. 2024, 9, 4007-16.
45. Qu, D.; Liu, T.; Cheng, Y.; et al. Volatilomics in diseases odour and electronic nose diagnosis. TrAC-Trend. Anal. Chem. 2025, 193, 118440.
46. Li, P.; Wang, Z.; Feng, Y.; Liao, X.; Deng, Y.; Wei, J. Engineering semiconductor metal oxide nanostructures for chemiresistive gas sensors in early warning of battery thermal runaway. TrAC-Trend. Anal. Chem. 2025, 193, 118480.
47. Zhang, Q.; Liu, T.; Wang, Q. Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery. J. Energy. Storage. 2021, 42, 103063.
48. Li, D.; Li, Y.; Wang, X.; Sun, G.; Cao, J.; Wang, Y. Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO. Appl. Surf. Sci. 2023, 613, 155987.
49. Zhao, X.; Xu, Z.; Zhang, Z.; et al. Titanium nitride sensor for selective NO2 detection. Nat. Commun. 2025, 16, 182.
50. Li, H.; Ding, Y.; Luo, K.; et al. Controllable surface carrier type of metal oxide nanocrystals for multifunctional photocatalysis. iScience 2025, 28, 111750.
51. Zhang, H.; Zhang, D.; Yang, Y.; et al. Eco-friendly triboelectric nanogenerator for self-powering stacked In2O3 nanosheets/PPy nanoparticles-based NO2 gas sensor. Nano. Energy. 2024, 128, 109978.
52. Ou, Y.; Wang, B.; Xu, N.; et al. Crystal face-dependent behavior of single-atom Pt: construct of SA-FLP dual active sites for efficient NO2 detection. Adv. Sci. (Weinh). 2024, 11, e2402038.
53. Fosnacht, K. G.; Pluth, M. D. Activity-based fluorescent probes for hydrogen sulfide and related reactive sulfur species. Chem. Rev. 2024, 124, 4124-257.
54. Obeso, J. L.; Flores, C. V.; Peralta, R. A.; et al. Metal-organic frameworks (MOFs) toward SO2 detection. Chem. Soc. Rev. 2025, 54, 4135-63.
55. Wang, K.; Bi, C.; Zelenkov, L.; et al. Fluorescent sensing for the detection and quantification of sulfur-containing gases. ACS. Sens. 2024, 9, 5708-27.
56. Shang, Z.; Meng, Q.; Tian, D.; et al. Red-emitting fluorescent probe for hydrogen sulfide detection and its applications in food freshness determination and in vivo bioimaging. Food. Chem. 2023, 427, 136701.
58. Zheng, M.; Cheng, Y.; Zhang, X.; et al. Atomic Ru species driven SnO2-based sensor for highly sensitive and selective detection of H2S in the ppb-level. ACS. Sens. 2025, 10, 1093-104.
59. Li, C.; Choi, P. G.; Masuda, Y. Highly sensitive and selective gas sensors based on NiO/MnO2 @NiO nanosheets to detect allyl mercaptan gas released by humans under psychological stress. Adv. Sci. (Weinh). 2022, 9, e2202442.
60. Li, P.; Wang, Z.; Feng, Y.; Feng, B.; Cheng, D.; Wei, J. Synergistic sensitization effects of single-atom gold and cerium dopants on mesoporous SnO2 nanospheres for enhanced volatile sulfur compound sensing. Mater. Horiz. 2024, 11, 3038-47.
61. Zhang, H.; Zheng, Z.; Yu, T.; Liu, C.; Qian, H.; Li, J. Seasonal and diurnal patterns of outdoor formaldehyde and impacts on indoor environments and health. Environ. Res. 2022, 205, 112550.
62. Kim, K. B.; Sohn, M. S.; Hwang, I. S.; et al. Mitigating alcohol inhibition of oxide chemiresistors: bilayer sensors with HZSM-5 zeolite overlayers. Nat. Commun. 2025, 16, 5121.
63. Sun, B.; Liu, M.; Wang, Q.; Song, P. Enhanced formaldehyde gas sensing properties of p-LaFeO3/n-Fe2O3 composite nanofibers synthesized by electrospinning method. Sensors. Actuat. B-Chem. 2025, 426, 137010.
64. Qi, C.; Yang, H.; Sun, Z.; et al. Modulating electronic structures of iron clusters through orbital rehybridization by adjacent single copper sites for efficient oxygen reduction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308344.
65. Wang, N.; Liu, Z.; Zhou, Y.; et al. Imparting chemiresistor with humidity-independent sensitivity toward trace-level formaldehyde via substitutional doping platinum single atom. Small 2024, 20, e2310465.
66. Bu, W.; Liu, N.; Zhang, Y.; et al. Atomically dispersed Pt on MOF-derived In2O3 for chemiresistive formaldehyde gas sensing. Sensors. Actuat. B-Chem. 2024, 404, 135260.
67. Gu, F.; Di, M.; Han, D.; Hong, S.; Wang, Z. Atomically dispersed Au on In2O3 nanosheets for highly sensitive and selective detection of formaldehyde. ACS. Sens. 2020, 5, 2611-9.
68. Chen, M.; Yazdani, M.; Murugappan, K. Non-destructive pest detection: innovations and challenges in sensing airborne semiochemicals. ACS. Sens. 2024, 9, 5728-47.
69. Gbiliy, A.; Senosy, I.; Saadan, M. A.; et al. Nanoarchitectures-powered volatile organic compound sensors enable real-time monitoring and early warning in sustainable agriculture. Coord. Chem. Rev. 2026, 548, 217169.
70. Yu, Y. X.; Sun, X. H.; Liu, Y.; Pan, Y. J.; Zhao, Y. Odor fingerprinting of Listeria monocytogenes recognized by SPME-GC-MS and E-nose. Can. J. Microbiol. 2015, 61, 367-72.
71. Wang, Z.; Wang, C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath. Res. 2013, 7, 037109.
72. Deng, C.; Zhang, J.; Yu, X.; Zhang, W.; Zhang, X. Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2004, 810, 269-75.
73. Turner, C.; Walton, C.; Hoashi, S.; Evans, M. Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath. Res. 2009, 3, 046004.
74. Yuan, T.; Xue, Z.; Chen, Y.; Xu, J. Single Pt atom-based gas sensor: break the detection limit and selectivity of acetone. Sensors. Actuat. B-Chem. 2023, 397, 134139.
75. Xu, Y.; Zheng, W.; Liu, X.; et al. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 2020, 7, 1519-27.
76. Zhao, T.; Qiu, P.; Fan, Y.; et al. Hierarchical branched mesoporous TiO2-SnO2 nanocomposites with well-defined n-n heterojunctions for highly efficient ethanol sensing. Adv. Sci. (Weinh). 2019, 6, 1902008.
77. Xue, L.; Cui, J.; Li, R.; et al. Interface engineering p-n heterostructured core-shell mesoporous particles for cascade catalysis promoted gas sensing. Adv. Mater. 2025, 37, e2416006.
78. Deng, Y.; Liu, Y.; Deng, Y.; Cheng, J.; Zou, Y.; Luo, W. In situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chin. Chem. Lett. 2024, 35, 108898.
79. Chen, Y.; Xu, J.; Pan, Y.; Cao, Q.; Yuan, K. Trace detection of benzene, toluene and xylene (BTX) by chemiresistive metal oxide-based gas sensors: Recent advances in heterojunction materials design. Chin. Chem. Lett. 2026, 37, 110606.


