REFERENCES
1. Feng F, Li L, Zhang J, Yang Z, Chi X. Strength prediction of coal-based solid waste filler based on BP neural network. Front Mater 2021;8:767031.
2. Wei Z, Yang K, He X, Zhang J, Hu G. Experimental study on the optimization of coal-based solid waste filling slurry ratio based on the response surface method. Materials 2022;15:5318.
3. Zhao X, Yang K, He X, Wei Z, Yu X, Zhang J. Study on mix proportion optimization and microstructure of coal-based solid waste (CSW) backfill material based on multi-objective decision-making model. Materials 2022;15:8464.
4. Zhou Y, Xie L, Kong D, Peng D, Zheng T. Research on optimizing performance of desulfurization-gypsum-based composite cementitious materials based on response surface method. Constr Build Mater 2022;341:127874.
5. Dong M, Li J, Lang L, Chen X, Jin J, Ma W. Recycling thermal modified phosphogypsum in calcium sulfoaluminate cement: evolution of engineering properties and micro-mechanism. Constr Build Mater 2023;373:130823.
6. Júnior LUD, dos Santos Lima GT, Silvestro L, Ruviaro AS, Gleize PJP, de Azevedo ARG. Influence of polycarboxylate superplasticizer and calcium sulfoaluminate cement on the rheology, hydration kinetics, and porosity of Portland cement pastes. J Build Eng 2023;68:106120.
7. Jing H, Xu M, Gao M, Li M, Dai S. Effect of compounding retarder and PCE on the early properties and hydration of high-belite sulphoaluminate cement. Appl Sci 2022;12:10731.
8. Zhou H, Qi X, Ma C, et al. Effect and mechanism of composite early-strength agents on sulfoaluminate cement-based UHPC. Case Stud Constr Mat 2023;18:e01768.
9. García-maté M, De la Torre A, León-reina L, Aranda M, Santacruz I. Hydration studies of calcium sulfoaluminate cements blended with fly ash. Cement Concrete Res 2013;54:12-20.
10. Huang Y, Qian J, Lu L, et al. Phosphogypsum as a component of calcium sulfoaluminate cement: hazardous elements immobilization, radioactivity and performances. J Clean Prod 2020;248:119287.
11. Gao D, Zhang Z, Meng Y, Tang J, Yang L. Effect of flue gas desulfurization gypsum on the properties of calcium sulfoaluminate cement blended with ground granulated blast furnace slag. Materials 2021;14:382.
12. Zhang J, Wang X, Jin B, Zhang X, Li Z, Guan X. Effect of superplasticizers on hydration kinetics of ultrafine sulfoaluminate cement-based grouting material. Thermochim Acta 2021;703:178988.
14. Mondal SK, Clinton C, Ma H, Kumar A, Okoronkwo MU. Effect of class C and class F fly ash on early-age and mature-age properties of calcium sulfoaluminate cement paste. Sustainability 2023;15:2501.
15. Ma B, Li X, Shen X, Mao Y, Huang H. Enhancing the addition of fly ash from thermal power plants in activated high belite sulfoaluminate cement. Constr Build Mater 2014;52:261-6.
16. Zhang J, Guan X, Wang X, et al. Microstructure and properties of sulfoaluminate cement-based grouting materials: effect of calcium sulfate variety. Adv Mater Sci Eng 2020;2020:1-8.
17. Chaunsali P, Ardeshirilajimi A, Mondal P. On the interaction of class C fly ash with Portland cement–calcium sulfoaluminate cement binder. Mater Struct 2018;51:131.
18. Dvorkin L, Zhitkovsky V, Makarenko R, Ribakov Y. The influence of polymer superplasticizers on properties of high-strength concrete based on low-clinker slag Portland cement. Materials 2023;16:2075.
19. Zhong D, Liu Q, Zheng D. Synthesis of lignin-grafted polycarboxylate superplasticizer and the dispersion performance in the cement paste. Colloid Surface A 2022;642:128689.
20. Zhang Y, Zhang W, Shi X, Guo T, Chen Z. Experimental study on unconfined compressive strength of expansive soil improved by lignin and cement. E3S Web Conf 2021;236:02010.
21. Wu Y, Li Q, Li G, Tang S, Niu M, Wu Y. Effect of naphthalene-based superplasticizer and polycarboxylic acid superplasticizer on the properties of sulfoaluminate cement. Materials 2021;14:662.
22. Gu L, Li H, Yang X, Dong B, Wen Z. Leakage behavior of toxic substances of naphthalene sulfonate-formaldehyde condensation from cement based materials. J Environ Manage 2020;255:109934.
23. Wang B, Pang B. Mechanical property and toughening mechanism of water reducing agents modified graphene nanoplatelets reinforced cement composites. Constr Build Mater 2019;226:699-711.
24. Gao L, Shi Y, Xu GQ. Comparative study on the application of naphthalene water-reducing agent and polycarboxylate water-reducing agent in high-performance concrete. AMR 2011;217-8:522-6.
25. Yao J, Feng D, Wang Z, Peng C, Zhang Y, Han L. Experimental study on performance of modified cement-based building materials under high-water-pressure surrounding rock environment. Coatings 2023;13:501.
26. Lv X, Li J. A novel admixture with intensive inhibition of hydration effects for cement: impact of amino trimethylene phosphonic-based material on the hydration characteristics and performance of ordinary Portland cement. J Mater Civ Eng 2023;35:04022363.
27. Du P, Li X, Zhou Z, et al. Preparation and properties of alite-modified calcium sulfoaluminate cement. Adv Cem Res 2021;33:135-43.
28. Ke G, Zhang J. Effects of retarding admixture, superplasticizer and supplementary cementitious material on the rheology and mechanical properties of high strength calcium sulfoaluminate cement paste. ACT 2020;18:17-26.
29. Wu Y, Yuan Y, Niu M, Kuang Y. Effect of sodium gluconate on properties and microstructure of ultra-high-performance concrete (UHPC). Materials 2023;16:3581.
30. Lin C, Liu Z, Gao Y, Li Z, Zhang J, Niu H. Study on the effect and mechanism of cement-based material retarder on red mud-based hybrid alkali activated cement. J Build Eng 2023;70:106353.
31. Kryvenko PV, Gots VI, Petropavlovskyi O, Rudenko I, Konstantynovskyi OP. Complex shrinkage-reducing additives for alkali activated slag cement fine concrete. SSP 2021;321:165-70.
32. He J, Yu S, Sang G, He J, Wang J, Chen Z. Properties of alkali-activated slag cement activated by weakly alkaline activator. Materials 2023;16:3871.
33. Wang Y, Sun L, Liu S, Li S, Guan X, Luo S. Development of a novel double-sulfate composite early strength agent to improve the hydration hardening properties of Portland cement paste. Coatings 2022;12:1485.
34. He H, Wang Y, He F, Luo S, Liu S. Effect of Li2CO3 on the properties of Portland cement paste. Mater Struct 2021;54:33.
35. Deng YH, Zhang CQ, Shao HQ, Wu H, Xie NQ. Effects of different lithium admixtures on ordinary Portland cement paste properties. AMR 2014;919-21:1780-9.
36. Zhang Y, Wang Y, Li T, Xiong Z, Sun Y. Effects of lithium carbonate on performances of sulphoaluminate cement-based dual liquid high water material and its mechanisms. Constr Build Mater 2018;161:374-80.
37. Wang J, Wang Y, Yu J, et al. Effects of sodium sulfate and potassium sulfate on the properties of calcium sulfoaluminate (CSA) cement based grouting materials. Constr Build Mater 2022;353:129045.
38. Wang Y, Tang H, Su J, He H, Zhao Y, Wang J. Effect of sodium sulfate and gypsum on performances of expansive grouting material with aluminum as expansion agent. Constr Build Mater 2023;394:132212.
39. Wang Y, Yu J, Wang J, Xiang D, Gu H, Cheng J. Effects of sodium aluminate and quicklime on the properties of CSA grouting materials. J Build Eng 2022;58:105060.