REFERENCES

1. Qin J, Yang Z, Xing F, Zhang L, Zhang H, Wu Z. Two-dimensional mesoporous materials for energy storage and conversion: current status, chemical synthesis and challenging perspectives. Electrochem Energy Rev 2023;6:9.

2. Li F, Liu R, Liu J, Li H. Voltage hysteresis in transition metal oxide cathodes for Li/Na-Ion batteries. Adv Funct Materials 2023;33:2300602.

3. Wu X, He G, Ding Y. Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochem Energ Rev 2020;3:541-80.

4. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.

5. Li H, Zhang W, Sun K, et al. Manganese-based materials for rechargeable batteries beyond lithium-ion. Adv Energy Mater 2021;11:2100867.

6. Xin S, Chang Z, Zhang X, Guo Y. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl Sci Rev 2017;4:54-70.

7. Kim J, Lee D, Jung H, Sun Y, Hassoun J, Scrosati B. An advanced lithium-sulfur battery. Adv Funct Mater 2013;23:1076-80.

8. Li L, Wu ZP, Sun H, et al. A foldable lithium-sulfur battery. ACS Nano 2015;9:11342-50.

9. Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater 2017;29:1700542.

10. Liu B, Fang R, Xie D, et al. Revisiting scientific issues for industrial applications of lithium-sulfur batteries. Energy Environ Mater 2018;1:196-208.

11. Zhao X, Cheruvally G, Kim C, et al. Lithium/sulfur secondary batteries: a review. J Electrochem Sci Technol 2016;7:97-114.

12. Wang M, Bai Z, Yang T, et al. Advances in high sulfur loading cathodes for practical lithium-sulfur batteries. Adv Energy Mater 2022;12:2201585.

13. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 2013;46:1125-34.

14. Huang L, Li J, Liu B, et al. Electrode design for lithium-sulfur batteries: problems and solutions. Adv Funct Mater 2020;30:1910375.

15. Zhang Q, Cheng X, Huang J, Peng H, Wei F. Review of carbon materials for advanced lithium-sulfur batteries. Carbon 2015;81:850.

16. Xu Z, Kim J, Kang K. Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 2018;19:84-107.

17. Liu H, Jia G, Zhu S, Sheng J, Zhang Z, Li Y. Functionalized carbon-based composite materials for cathode application of lithium-sulfur batteries. Acta Chimica Sinica 2022;80:89-97.

18. Zhang SS. Heteroatom-doped carbons: synthesis, chemistry and application in lithium/sulphur batteries. Inorg Chem Front 2015;2:1059-69.

19. Yang J, Xie J, Zhou X, et al. Functionalized N-Doped porous carbon nanofiber webs for a lithium-sulfur battery with high capacity and rate performance. J Phys Chem C 2014;118:1800-7.

20. Niu S, Lv W, Zhou G, et al. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries. Chem Commun 2015;51:17720-3.

21. Kim E, Lee AS, Lee T, et al. Organic dye-derived N, S co-doped porous carbon hosts for effective lithium polysulfide confinement in lithium-sulfur batteries. Nanomaterials 2021;11:2954.

22. Díez N, Sevilla M, Fuertes AB. N/S-co-doped porous carbon nanoparticles serving the dual function of sulfur host and separator coating in lithium-sulfur batteries. ACS Appl Energy Mater 2020;3:3397-407.

23. Sun K, Wang C, Tebyetekerwa M, Zhao XS. Electrocapacitive desalination with nitrogen-doped hierarchically structured carbon prepared using a sustainable salt-template method. Chem Eng J 2022;446:137211.

24. Kim DK, Seul Byun J, Moon S, Choi J, Ha Chang J, Suk J. Molten salts approach of metal-organic framework-derived nitrogen-doped porous carbon as sulfur host for lithium-sulfur batteries. Chem Eng J 2022;441:135945.

25. Yang H, Yang Y, Zhang X, et al. Nitrogen-doped porous carbon networks with ACtive Fe-Nx sites to enhance catalytic conversion of polysulfides in lithium-sulfur batteries. ACS Appl Mater Interfaces 2019;11:31860-8.

26. Benítez A, Amaro-gahete J, Chien Y, Caballero Á, Morales J, Brandell D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew Sust Energ Rev 2022;154:111783.

27. Liu P, Wang Y, Liu J. Biomass-derived porous carbon materials for advanced lithium sulfur batteries. J Energy Chem 2019;34:171-85.

28. Li G, Sun J, Hou W, Jiang S, Huang Y, Geng J. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat Commun 2016;7:10601.

29. Pang Q, Tang J, Huang H, et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv Mater 2015;27:6021-8.

30. Yu X, Yin Y, Ma C, et al. N-doped porous carbon@CNT nanowire as effective polysulfides adsorption-catalysis interlayer for high-performance lithium-sulfur batteries. Chem Eng Sci 2023;268:118400.

31. Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023;481:215055.

32. Peng W, Han G, Huang Y, Cao Y, Song S. Insight the effect of crystallinity of natural graphite on the electrochemical performance of reduced graphene oxide. Results Phys 2018;11:131-7.

33. Schroer ZS, Wu Y, Xing Y, et al. Nitrogen-sulfur-doped graphene quantum dots with metal ion-resistance for bioimaging. ACS Appl Nano Mater 2019;2:6858-65.

34. Yang Z, Dai Y, Wang S, Cheng H, Yu J. In situ incorporation of a S, N doped carbon/sulfur composite for lithium sulfur batteries. RSC Adv 2015;5:78017-25.

35. Chen M, Zhao S, Jiang S, et al. Suppressing the polysulfide shuttle effect by heteroatom-doping for high-performance lithium-sulfur batteries. ACS Sustainable Chem Eng 2018;6:7545-57.

36. Bao W, Su D, Zhang W, Guo X, Wang G. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv Funct Mater 2016;26:8746-56.

37. Wang D, Liu J, Bao X, Qing C, Zhu T, Wang H. Macro/mesoporous Carbon/defective TiO2 composite as a functional host for lithium-sulfur batteries. ACS Appl Energy Mater 2022;5:2573-9.

38. Lei D, Li J, Xiang M, et al. Synergistic constraint and conversion of lithium polysulfide using a 3D hollow carbon interlayer in ultrahigh sulfur content Li-S batteries. Appl Surf Sci 2023;623:157080.

39. Zhang H, An Y, Li S, et al. Honeycomb porous N-doped carbon synergized with ultrafine Ni2P electrocatalyst for boosting polysulfide conversion in lithium-sulfur batteries. Electrochimica Acta 2023;445:142047.

40. Wen Y, Wang X, Huang J, Li Y, Li T, Ren B. Coffee grounds derived sulfur and nitrogen dual-doped porous carbon for the cathode material of lithium-sulfur batteries. Carbon Lett 2023;33:1265-78.

41. Li M, Liu Z, Tan L, et al. Fabrication of cubic and porous carbon cages with in-situ-grown carbon nanotube networks and cobalt phosphide for high-capacity and stable lithium-sulfur batteries. ACS Sustainable Chem Eng 2022;10:10223-33.

42. Ma L, Liu Q, Zhu H, Liu L, Kang C, Ji Z. Flower-like Ni3Sn2@Ni3S2 with core-shell nanostructure as electrode material for supercapacitors with high rate and capacitance. J Colloid Interface Sci 2022;626:951-62.

43. Peng W, Wang W, Han G, Huang Y, Zhang Y. Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization. Desalination 2020;473:114191.

44. Sun M, Wang X, Li Y, Zhao Z, Qiu J. Integration of desulfurization and lithium-sulfur batteries enabled by amino‐functionalized porous carbon nanofibers. Energy & Environ Materials 2023;6:e12349.

45. Liang Z, Shen J, Xu X, et al. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv Mater 2022;34:e2200102.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/