REFERENCES

1. Li FJ, Yang HW, Ayyamperumal R, Liu Y. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere 2022;308:136396.

2. Kumar V, Dwivedi S, Oh S. A review on microbial-integrated techniques as promising cleaner option for removal of chromium, cadmium and lead from industrial wastewater. J Water Process Eng 2022;47:102727.

3. Xu L, Dai H, Skuza L, et al. Integrated survey on the heavy metal distribution, sources and risk assessment of soil in a commonly developed industrial area. Ecotoxicol Environ Saf 2022;236:113462.

4. Yan J, Zhang H, Niu J, et al. Effects of lead and cadmium co-exposure on liver function in residents near a mining and smelting area in northwestern China. Environ Geochem Health 2022;44:4173-89.

5. Akerstrom M, Barregard L, Lundh T, Sallsten G. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol Appl Pharmacol 2013;268:286-93.

6. Browar AW, Leavitt LL, Prozialeck WC, Edwards JR. Levels of cadmium in human mandibular bone. Toxics 2019;7:31.

7. Liu Q, Zhang R, Wang X, et al. Effects of sub-chronic, low-dose cadmium exposure on kidney damage and potential mechanisms. Ann Transl Med 2019;7:177.

8. Wu J, Wang T, Wang J, Zhang Y, Pan WP. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity. Sci Total Environ 2021;754:142150.

9. Jin W, Fu Y, Hu M, Wang S, Liu Z. Highly efficient SnS-decorated Bi2O3 nanosheets for simultaneous electrochemical detection and removal of Cd(II) and Pb(II). J Electroanal Chem 2020;856:113744.

10. Çifci C, Şanlı O. Poly(vinyl pyrrolidone)-enhanced crossflow filtration of Fe(III), Cu(II) and Cd(II) ions using alginic acid/cellulose composite membranes. Desalination Water Treat 2011;29:87-95.

11. Munoz-Cupa C, Hu Y, Xu C, Bassi A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ 2021;754:142429.

12. Chen J, Yang J, Tian J, et al. A pathway for promoting bioelectrochemical performance of microbial fuel cell by synthesizing graphite carbon nitride doped on single atom catalyst copper as cathode catalyst. Bioresour Technol 2023;372:128677.

13. Liu H, Qin S, Li A, et al. Bioelectrochemical systems for enhanced nitrogen removal with minimal greenhouse gas emission from carbon-deficient wastewater: a review. Sci Total Environ 2023;859:160183.

14. Wang S, Jiang J, Zhao Q, Wei L, Wang K. Investigation of electrochemical properties, leachate purification, organic matter characteristics, and microbial diversity in a sludge treatment wetland- microbial fuel cell. Sci Total Environ 2023;862:160799.

15. Kaushik A, Singh A. Metal removal and recovery using bioelectrochemical technology: The major determinants and opportunities for synchronic wastewater treatment and energy production. J Environ Manage 2020;270:110826.

16. Zhu H, Hu X, Zha Z, et al. Long-time enrofloxacin processing with microbial fuel cells and the influence of coexisting heavy metals (Cu and Zn). J Environ Chem Eng 2022;10:107965.

17. Daud NNM, Ahmad A, Yaqoob AA, Ibrahim MNM. Application of rotten rice as a substrate for bacterial species to generate energy and the removal of toxic metals from wastewater through microbial fuel cells. Environ Sci Pollut Res Int 2021;28:62816-27.

18. Saba B, Christy AD, Yu Z, Co AC. Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sust Energ Rev 2017;73:75-84.

19. Reddy C, Nguyen HTH, Noori MT, Min B. Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: current status and future perspectives. Bioresour Technol 2019;292:122010.

20. Armoza-Zvuloni R, Shaked Y. Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu. Biogeosciences 2014;11:4587-98.

21. Znad H, Awual MR, Martini S. The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. Molecules 2022;27:1275.

22. Zhang Y, He Q, Xia L, Li Y, Song S. Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode. Biochem Eng J 2018;138:179-87.

23. Yang Z, Li J, Chen F, et al. Bioelectrochemical process for simultaneous removal of copper, ammonium and organic matter using an algae-assisted triple-chamber microbial fuel cell. Sci Total Environ 2021;798:149327.

24. Tang RCO, Jang J, Lan T, et al. Review on design factors of microbial fuel cells using Buckingham’s Pi Theorem. Renew Sust Energ Rev 2020;130:109878.

25. Cai T, Meng L, Chen G, et al. Application of advanced anodes in microbial fuel cells for power generation: a review. Chemosphere 2020;248:125985.

26. Mohan S, Velvizhi G, Annie Modestra J, Srikanth S. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energ Rev 2014;40:779-97.

27. Noori MT, Ezugwu CI, Wang Y, Min B. Robust bimetallic metal-organic framework cathode catalyst to boost oxygen reduction reaction in microbial fuel cell. J Power Sources 2022;547:231947.

28. Peng W, Li H, Liu Y, Song S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 2017;230:496-504.

29. Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 2013;5:52-71.

30. Lin T, Ding W, Sun L, Wang L, Liu C, Song H. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy 2018;50:639-48.

31. Yang X, Ma X, Wang K, Wu D, Lei Z, Feng C. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim Acta 2016;210:846-53.

32. Peng W, Li H, Liu Y, Song S. Effect of oxidation degree of graphene oxide on the electrochemical performance of CoAl-layered double hydroxide/graphene composites. Appl Mater Today 2017;7:201-11.

33. Tan P, Bi Q, Hu Y, Fang Z, Chen Y, Cheng J. Effect of the degree of oxidation and defects of graphene oxide on adsorption of Cu2+ from aqueous solution. Appl Surf Sci 2017;423:1141-51.

34. Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient synthesis of graphene oxide based on improved hummers method. Sci Rep 2016;6:36143.

35. Jin H, Zhu L, Jin S, Jiang L, Zou Y. Raman spectroscopy analysis of graphene oxide-enhanced textiles. J Raman Spectrosc 2021;52:843-8.

36. Li IL, Chen SF, Zhai JP. The Raman spectrum of graphene oxide decorated with different metal nanoparticles. Conference on AOPC 2015: Micro/Nano Optical Manufacturing Technologies; and Laser Processing and Rapid Prototyping Techniques; 2015 May 5-7. Beijing; 2015.

37. Rocha EM, Mota FS, Vilar VJ, Boaventura RA. Comparative analysis of trace contaminants in leachates before and after a pre-oxidation using a solar photo-Fenton reaction. Environ Sci Pollut Res Int 2013;20:5994-6006.

38. Han Z. XRD/XPS study on oxidation of graphite. Available from: https://www.semanticscholar.org/paper/XRD-XPS-Study-on-Oxidation-of-Graphite-Zhi/dc6065d97b67b06ab30ab05ec3845b2237a2edb4#citing-papers [Last accessed on 8 Mar 2023].

39. Jiang C, Yang Q, Wang D, et al. Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell. Chem Eng J 2017;308:783-90.

40. Samsudeen N, Radhakrishnan TK, Matheswaran M. Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresour Technol 2015;195:242-7.

41. Huang G, Zhang Y, Tang J, Du Y. Remediation of Cd contaminated soil in microbial fuel cells: effects of Cd concentration and electrode spacing. J Environ Eng 2020;146:04020050.

42. Simeon MI, Asoiro FU, Aliyu M, Raji OA, Freitag R. Polarization and power density trends of a soil-based microbial fuel cell treated with human urine. Int J Energy Res 2020;44:5968-76.

43. Kakarla R, Min B. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode. Bioprocess Biosyst Eng 2014;37:2453-61.

44. Hwang JH, Ryu H, Rodriguez KL, et al. A strategy for power generation from bilgewater using a photosynthetic microalgal fuel cell (MAFC). J Power Sources 2021;484:229222.

45. Commault AS, Laczka O, Siboni N, et al. Electricity and biomass production in a bacteria- Chlorella based microbial fuel cell treating wastewater. J Power Sources 2017;356:299-309.

46. Bazdar E, Roshandel R, Yaghmaei S, Mardanpour MM. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour Technol 2018;261:350-60.

47. Lin CC, Wei CH, Chen CI, Shieh CJ, Liu YC. Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm. Bioresour Technol 2013;135:640-3.

48. Gouveia L, Neves C, Sebastião D, Nobre BP, Matos CT. Effect of light on the production of bioelectricity and added-value microalgae biomass in a photosynthetic alga microbial fuel cell. Bioresour Technol 2014;154:171-7.

49. Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010;4:5731-6.

50. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 2012;7:5901-14.

51. Wang Z, Zhang Z, Xia L, et al. Sulfate induced surface modification of Chlorella for enhanced mercury immobilization. J Environ Chem Eng 2022;10:108156.

52. Zhang Y, Haris M, Zhang L, et al. Amino-modified chitosan/gold tailings composite for selective and highly efficient removal of lead and cadmium from wastewater. Chemosphere 2022;308:136086.

53. Wu C, Gao J, Liu Y, et al. High-gravity intensified electrodeposition for efficient removal of Cd2+ from heavy metal wastewater. Sep Purif Technol 2022;289:120809.

54. Zhao L, Yu G, Lv M, Huang X, Zhu H, Chen W. 2D RhTe monolayer: a highly efficient electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023;629:971-80.

55. He T, Wu J, Li Y, et al. A step-by-step design for dual channel metal-free photocatalysts towards high yield H2O2 photo-production from air and water. Chem Eng J 2023;451:138551.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/