1. Chen J, Min F, Liu L, Liu C. Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Applied Surface Science 2019;476:6-15.
2. Ismadji S, Soetaredjo FE, Ayucitra A. Natural clay minerals as environmental cleaning agents. Clay Materials for Environmental Remediation ;2015:5-37.
3. Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci 2008;140:114-31.
4. Xu Y, Liang X, Xu Y, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 2017;27:193-204.
5. Shaikh SM, Nasser MS, Hussein I, et al. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: a comprehensive review. Separation and Purification Technology 2017;187:137-61.
6. Mingqing Z, Jiongtian L, Aiqin S, Han-hu L. Calcium ions adsorption mechanism on clay particles surface in coal slurry. Journal of China Coal Society 2005;30:637-41.
7. Xing Y, Xu X, Gui X, Cao Y, Xu M. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel 2017;195:284-9.
8. Zhao G, Tan Q, Xiang L, et al. Structure and properties of water film adsorbed on mica surfaces. J Chem Phys 2015;143:104705.
9. Kimura K, Ido S, Oyabu N, et al. Visualizing water molecule distribution by atomic force microscopy. J Chem Phys 2010;132:194705.
10. Kobayashi K, Oyabu N, Kimura K, et al. Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy. J Chem Phys 2013;138:184704.
11. Song S, Peng C, Gonzalez-Olivares MA, Lopez-Valdivieso A, Fort T. Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement. J Colloid Interface Sci 2005;287:114-20.
12. Zhao Y, Yi H, Jia F, et al. A novel method for determining the thickness of hydration shells on nanosheets: a case of montmorillonite in water. Powder Technology 2017;306:74-9.
13. Cheng L, Fenter P, Nagy KL, Schlegel ML, Sturchio NC. Molecular-scale density oscillations in water adjacent to a mica surface. Phys Rev Lett 2001;87:156103.
14. Fenter P, Lee SS. Hydration layer structure at solid-water interfaces. MRS Bull 2014;39:1056-61.
15. Min F, Peng C, Liu L. Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions. Powder Technology 2015;283:368-72.
16. Peng CL, Min FF, Song SX. Study on hydration of montmorillonite in aqueous solutions. Mining, Metallurgy & Exploration 2015;32:196-202.
18. Nagy Á. Density functional. Theory and application to atoms and molecules. Physics Reports 1998;298:1-79.
19. Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. ChemInform 2003:34.
20. Schrödinger E. An undulatory theory of the mechanics of atoms and molecules. Phys Rev 1926;28:1049-70.
21. Thomas LH. The calculation of atomic fields. Math Proc Camb Phil Soc 1927;23:542-8.
22. Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend Accad Naz. Lincei 1927;6:32. Available from: https://www.researchgate.net/publication/305387140_Un_metodo_statistico_per_la_determinazione_di_alcune_priorieta_dell%27atomo.
23. Dirac PAM. Note on exchange phenomena in the Thomas atom. Math Proc Camb Phil Soc 1930;26:376-85.
24. Teller E. On the stability of molecules in the Thomas-Fermi theory. Rev Mod Phys 1962;34:627-31.
25. Rajagopal AK, Callaway J. Inhomogeneous electron gas. Phys Rev B 1973;7:1912-9.
26. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133-8.
27. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.
28. Yanai T, Tew DP, Handy NC. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters 2004;393:51-7.
29. Hu XL, Michaelides A. Ice formation on kaolinite: lattice match or amphoterism? Surface Science 2007;601:5378-81.
30. Hu XL, Michaelides A. Water on the hydroxylated (001) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer. Surface Science 2008;602:960-74.
31. Peng C, Min F, Liu L, Chen J. A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface. Applied Surface Science 2016;387:308-16.
32. Zhang Y, Meng Y, Liu H, Yang M. First-principles study of water desorption from montmorillonite surface. J Mol Model 2016;22:105.
33. Fonseca CG, Vaiss VS, Wypych F, Diniz R, Leitão AA. Structural and thermodynamic investigation of the hydration-dehydration process of Na + -Montmorillonite using DFT calculations. Applied Clay Science 2017;143:212-9.
34. Sprik M. Computation of the pK of liquid water using coordination constraints. Chemical Physics 2000;258:139-50.
35. Tunega D, Haberhauer G, Gerzabek MH, Lischka H. Theoretical study of adsorption sites on the (001) surfaces of 1:1 clay minerals. Langmuir 2002;18:139-47.
36. Tunega D, Gerzabek MH, Lischka H. Ab Initio Molecular dynamics study of a monomolecular water layer on octahedral and tetrahedral kaolinite surfaces. J Phys Chem B 2004;108:5930-6.
37. Šolc R, Gerzabek MH, Lischka H, Tunega D. Wettability of kaolinite (001) surfaces - Molecular dynamic study. Geoderma 2011;169:47-54.
38. Jorgensen WL, Maxwell DS, Tirado-rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118:11225-36.
39. Weiner PK, Kollman PA. AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comput Chem 1981;2:287-303.
40. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009;30:1545-614.
41. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, et al. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 1988;4:31-47.
42. Sun H. COMPASS: an AB initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 1998;102:7338-64.
43. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114:10024-35.
44. Mayo SL, Olafson BD and Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem 1990;94:8897-909.
45. Cygan RT, Liang J, Kalinichev AG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 2004;108:1255-66.
46. Heinz H, Koerner H, Anderson KL, Vaia RA, Farmer BL. Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chem Mater 2005;17:5658-69.
47. Heinz H, Lin TJ, Mishra RK, Emami FS. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 2013;29:1754-65.
48. Bish DL. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays and Clay Minerals 1989;37:289-96.
49. Bish DL. Rietveld refinement and fourier-transform infrared spectroscopic study of the dickite structure at low temperature. Clays and Clay Minerals 1993;41:297-304.
50. Lage MR, Dedzo GK, Stoyanov SR, et al. Computational and experimental investigations of the role of water and alcohols in the desorption of heterocyclic aromatic compounds from kaolinite in toluene. J Phys Chem C 2018;122:10377-91.
51. Fuchs K, Bonjer K, Gajewski D, et al. Crustal evolution of the Rhinegraben area. 1. Exploring the lower crust in the Rhinegraben rift by unified geophysical experiments. Tectonophysics 1987;141:261-75.
52. Demichelis R, De La Pierre M, Mookherjee M, Zicovich-wilson CM, Orlando R. Serpentine polymorphism: a quantitative insight from first-principles calculations. CrystEngComm 2016;18:4412-9.
53. Sun W, Zeng H, Tang T. Synergetic adsorption of polymers on montmorillonite: Insights from molecular dynamics simulations. Applied Clay Science 2020;193:105654.
54. Viani A, Gualtieri AF, Artioli G. The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist 2002;87:966-75.
55. Richardson SM and Richardson JW. Crystal structure of a pink muscovite from Archer’s post, Kenya: implications for reverse pleochroism in dioctahedral micas. American Mineralogist 1982;67:69-75.
56. Xu Y, Liu Y, Liu G. Molecular dynamics simulation of primary ammonium ions with different alkyl chains on the muscovite (001) surface. International Journal of Mineral Processing 2015;145:48-56.
57. Geatches DL, Jacquet A, Clark SJ, Greenwell HC. Monomer Adsorption on Kaolinite: Modeling the Essential Ingredients. J Phys Chem C 2012;116:22365-74.
58. Xi P, Ma R, Liu W. Study on the crystal structure of coal kaolinite and non-coal kaolinite: insights from experiments and DFT simulations. Symmetry 2020;12:1125.
59. Wang Q, Kong X, Zhang B, Wang J. Adsorption of Zn(II) on the kaolinite(001) surfaces in aqueous environment: a combined DFT and molecular dynamics study. Applied Surface Science 2017;414:405-12.
60. Han Y, Liu W, Chen J. DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces. Applied Surface Science 2016;370:403-9.
61. Peng C, Min F, Liu L, Chen J. The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: a DFT study: DFT study of adsorption of CaOH + on (001) Na-montmorillonite surface. Surf Interface Anal 2017;49:267-77.
62. Peng C, Zhong Y, Min F. Adsorption of alkylamine cations on montmorillonite (001) surface: a density functional theory study. Applied Clay Science 2018;152:249-58.
63. Kasprzhitskii A, Lazorenko G, Yavna V, Daniel P. DFT theoretical and FT-IR spectroscopic investigations of the plasticity of clay minerals dispersions. Journal of Molecular Structure 2016;1109:97-105.
64. Ertan E, Kimberg V, Gel’mukhanov F, et al. Theoretical simulations of oxygen K -edge resonant inelastic x-ray scattering of kaolinite. Phys Rev B 2017:95.
65. Scholtzová E, Tunega D. Prediction of mechanical properties of grafted kaolinite - a DFT study. Applied Clay Science 2020;193:105692.
66. Schoonheydt RA, Johnston CT, Bergaya F. Clay minerals and their surfaces. Surface and Interface Chemistry of Clay Minerals ;2018:1-21.
67. Bish DL. Rietveld Refinement of the Kaolinite Structure at 1.5 K. Clays and Clay Minerals 1993;41:738-44.
68. Chen J, Min F, Liu L, Liu C, Lu F. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite. Applied Surface Science 2017;419:241-51.
69. Zhang Z, Liu J, Yang Y, Shen F, Zhang Z. Theoretical investigation of sodium capture mechanism on kaolinite surfaces. Fuel 2018;234:318-25.
70. Peng C, Zhong Y, Wang G, Min F, Qin L. Atomic-level insights into the adsorption of rare earth Y(OH)3-nn+ (. n ;469:357-67.
71. Chen J, Min F, Liu L, Cai C. Systematic exploration of the interactions between Fe-doped kaolinite and coal based on DFT calculations. Fuel 2020;266:117082.
72. He M, Zhao J. Effects of Mg, Ca, and Fe(II) Doping on the Kaolinite (001) Surface with H < SUB > 2 </ SUB > O Adsorption. Clays Clay Miner 2012;60:330-7.
73. Voora VK, Al-Saidi WA, Jordan KD. Density functional theory study of pyrophyllite and M-montmorillonites (M = Li, Na, K, Mg, and Ca): role of dispersion interactions. J Phys Chem A 2011;115:9695-703.
74. Lavikainen LP, Tanskanen JT, Schatz T, Kasa S, Pakkanen TA. Montmorillonite interlayer surface chemistry: effect of magnesium ion substitution on cation adsorption. Theor Chem Acc 2015:134.
75. Luo Y, Ou L, Chen J, et al. Effects of defects and impurities on the adsorption of H2O on smithsonite (101) surfaces: insight from DFT-D and MD. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;628:127300.
76. Wungu TD, Agusta MK, Saputro AG, Dipojono HK, Kasai H. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT). J Phys Condens Matter 2012;24:475506.
77. Du J, Min F, Zhang M, Peng C, Liu C. Mechanism of H2O adsorption on ammonium-illite surface based on density functional theory. Journal of China University of Mining and Technology 2017;46:1349-56.
78. Zhang C, Qi Y, Qian P, Zhong M, Wang L, Yin H. Quantum chemical study of the adsorption of water molecules on kaolinite surfaces. Computational and Theoretical Chemistry 2014;1046:10-9.
79. Croteau T, Bertram AK, Patey GN. Simulation of water adsorption on kaolinite under atmospheric conditions. J Phys Chem A 2009;113:7826-33.
81. Vasconcelos IF, Bunker BA, Cygan RT. Molecular dynamics modeling of ion adsorption to the basal surfaces of kaolinite. J Phys Chem C 2007;111:6753-62.
82. Baek W, Avramov PV, Kim Y. Nuclear magnetic resonance and theoretical simulation study on Cs ion co-adsorbed with other alkali cations on illite. Applied Surface Science 2019;489:766-75.
83. Doi A, Khosravi M, Ejtemaei M, Nguyen TA, Nguyen AV. Specificity and affinity of multivalent ions adsorption to kaolinite surface. Applied Clay Science 2020;190:105557.
84. Greathouse JA, Hart DB, Bowers GM, Kirkpatrick RJ, Cygan RT. Molecular simulation of structure and diffusion at smectite-water interfaces: using expanded clay interlayers as model Nanopores. J Phys Chem C 2015;119:17126-36.
85. Subramanian N, Whittaker ML, Ophus C, Lammers LN. Structural implications of interfacial hydrogen bonding in hydrated wyoming-montmorillonite clay. J Phys Chem C 2020;124:8697-705.
86. Yi H, Jia F, Zhao Y, et al. Surface wettability of montmorillonite (001) surface as affected by surface charge and exchangeable cations: a molecular dynamic study. Applied Surface Science 2018;459:148-54.
87. Pérez-conesa S, Martínez JM, Sánchez Marcos E. Hydration and diffusion mechanism of uranyl in montmorillonite clay: molecular dynamics using an AB initio potential. J Phys Chem C 2017;121:27437-44.
88. Wang X, Huang Y, Pan Z, Wang Y, Liu C. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations. J Hazard Mater 2015;295:43-54.
89. Heimann JE, Grimes RT, Rosenzweig Z, Bennett JW. A density functional theory (DFT) investigation of how small molecules and atmospheric pollutants relevant to art conservation adsorb on kaolinite. Applied Clay Science 2021;206:106075.
90. Zhang SB, Wei S, Zunger A. Stabilization of ternary compounds via ordered arrays of defect pairs. Phys Rev Lett 1997;78:4059-62.
91. Zhu B, Qi C, Zhang Y, et al. Synthesis, characterization and acid-base properties of kaolinite and metal (Fe, Mn, Co) doped kaolinite. Applied Clay Science 2019;179:105138.
92. Hou J, Chen M, Zhou Y, et al. Regulating the effect of element doping on the CO2 capture performance of kaolinite: a density functional theory study. Applied Surface Science 2020;512:145642.
93. Richard D, Rendtorff NM. Local environments in iron-bearing clay minerals by DFT approaches: the case of structural fe in kaolinite. Applied Clay Science 2021;213:106251.
94. Liao B, Wang J, Han X, et al. Microscopic molecular insights into clathrate methane hydrates dissociation in a flowing system. Chemical Engineering Journal 2022;430:133098.
95. Subramanian N, Nielsen Lammers L. Thermodynamics of ion exchange coupled with swelling reactions in hydrated clay minerals. J Colloid Interface Sci 2022;608:692-701.
96. Parr RG, Yang W. Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 1995;46:701-28.
97. Hagler A, Ewig C. On the use of quantum energy surfaces in the derivation of molecular force fields. Computer Physics Communications 1994;84:131-55.
98. Nevins N and Allinger NL. Molecular mechanics (MM4) vibrational frequency calculations for alkenes and conjugated hydrocarbons. Journal of Computational Chemistry 1996;17:730-46.
99. Argyris D, Ho T, Cole DR, Striolo A. Molecular Dynamics Studies of Interfacial Water at the Alumina Surface. J Phys Chem C 2011;115:2038-46.
100. Du H, Miller J. A molecular dynamics simulation study of water structure and adsorption states at talc surfaces. International Journal of Mineral Processing 2007;84:172-84.
101. Wang X, Liu W, Liu W, et al. Understanding adsorption of amine surfactants on the solvated quartz (101) surface by a jointed Dreiding-ClayFF force field. Applied Surface Science 2021;566:150737.
102. Wang X, Liu J, Du H, Miller JD. States of adsorbed dodecyl amine and water at a silica surface as revealed by vibrational spectroscopy. Langmuir 2010;26:3407-14.
103. Pitman MC, van Duin AC. Dynamics of confined reactive water in smectite clay-zeolite composites. J Am Chem Soc 2012;134:3042-53.
104. Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2016:2.
105. Valverde JR. Molecular modelling: principles and applications. Briefings in Bioinformatics 2001;2:199-200.
106. Brooks CL. Computer simulation of liquids. J Solution Chem 1989;18:99-99.
107. Peng C, Wang G, Qin L, et al. Molecular dynamics simulation of NH4-montmorillonite interlayer hydration: structure, energetics, and dynamics. Applied Clay Science 2020;195:105657.
108. Dünweg B, Kremer K. Molecular dynamics simulation of a polymer chain in solution. The Journal of Chemical Physics 1993;99:6983-97.
109. Xu J, Camara M, Liu J, et al. Molecular dynamics study of the swelling patterns of Na/Cs-, Na/Mg-montmorillonites and hydration of interlayer cations. Molecular Simulation 2017;43:575-89.
110. Ranathunga DTS, Shamir A, Dai X, Nielsen SO. Molecular dynamics simulations of water condensation on surfaces with tunable wettability. Langmuir 2020;36:7383-91.
111. Eremin RA, Kholmurodov K, Petrenko VI, Rosta L, Avdeev MV. Effect of the solute-solvent interface on small-angle neutron scattering from organic solutions of short alkyl chain molecules as revealed by molecular dynamics simulation. J Appl Crystallogr 2013;46:372-8.
112. Belashchenko DK, Rodnikova MN, Balabaev NK, Solonina IA. Investigating hydrogen bonds in liquid ethylene glycol structure by means of molecular dynamics. Russ J Phys Chem 2014;88:94-102.
113. Moultos OA, Orozco GA, Tsimpanogiannis IN, Panagiotopoulos AZ, Economou IG. Atomistic molecular dynamics simulations of H2O diffusivity in liquid and supercritical CO2. Molecular Physics 2015;113:2805-14.
114. Moultos OA, Zhang Y, Tsimpanogiannis IN, Economou IG, Maginn EJ. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: the case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers. J Chem Phys 2016;145:074109.
115. Yeh I, Hummer G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B 2004;108:15873-9.
116. Jamali SH, Wolff L, Becker TM, et al. Finite-size effects of binary mutual diffusion coefficients from molecular dynamics. J Chem Theory Comput 2018;14:2667-77.
117. Kikugawa G, Ando S, Suzuki J, et al. Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid. J Chem Phys 2015;142:024503.
118. Yang X, Zhang H, Li L, Ji X. Corrections of the periodic boundary conditions with rectangular simulation boxes on the diffusion coefficient, general aspects. Molecular Simulation 2017;43:1423-9.
119. MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998;102:3586-616.
120. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008;4:435-47.
121. Papavasileiou KD, Avramopoulos A, Leonis G, Papadopoulos MG. Computational investigation of fullerene-DNA interactions: Implications of fullerene’s size and functionalization on DNA structure and binding energetics. J Mol Graph Model 2017;74:177-92.
122. Ghadari R, Alavi FS, Zahedi M. Evaluation of the effect of the chiral centers of Taxol on binding to β-tubulin: a docking and molecular dynamics simulation study. Comput Biol Chem 2015;56:33-40.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.