REFERENCES

1. Davidovits J. Geopolymer cement. A review. Geopolymer institute. Tech Pap 2013;21:1-11.

2. Davidovits J. Global warming impact on the cement and aggregates industries. World Resour Rev 1994;6:263-78.

3. Yusuf MO, Johari MAM, Ahmad ZA, Maslehuddin M. Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. Constr Build Mater 2014;52:504-10.

4. Part WK, Ramli M, Cheah CB. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 2015;77:370-95.

5. Aiken TA, Kwasny J, Sha W, Soutsos MN. Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem Concr Res 2018;111:23-40.

6. García de Arquer FP, Bushuyev OS, De Luna P, et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv Mater 2018;30:1802858.

7. Vinai R, Rafeet A, Soutsos M, Sha W. The role of water content and paste proportion on physico-mechanical properties of alkali activated fly ash-ggbs concrete. J Sustain Metall 2016;2:51-61.

8. Zhang Z, Provis JL, Reid A, Wang H. Geopolymer foam concrete: an emerging material for sustainable construction. Constr Build Mater 2014;56:113-27.

9. Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal 1989;35:429-41.

10. Thokchom S, Ghosh P, Ghosh S. Performance of fly ash based geopolymer mortars in sulphate solution. J Eng Sci Technol Rev 2010;3:36-40.

11. Rangan BV. Geopolymer concrete for environmental protection. Indian Concr J 2014;88:41-59.

12. Crozier DA, Sanjayan JG. Chemical and physical degradation of concrete at elevated temperatures. Concr Aust 1999; doi: 10.1016/j.cemconcomp.2008.08.001.

13. Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 2010;24:1176-83.

14. Prud’Homme E, Michaud P, Joussein E, Peyratout C, Smith A, Rossignol S. In situ inorganic foams prepared from various clays at low temperature. Appl Clay Sci 2011;51:15-22.

15. He J, Zhang J, Yu Y, Zhang G. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study. Constr Build Mater 2012;30:80-91.

16. Tho-in T, Sata V, Chindaprasirt P, Jaturapitakkul C. Pervious high-calcium fly ash geopolymer concrete. Constr Build Mater 2012;30:366-71.

17. Rickard WDA, Temuujin J, van Riessen A. Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. J Non Cryst Solids 2012;358:1830-9.

18. Ahmari S, Zhang L. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 2012;29:323-31.

19. Zhuguo LI, Sha L. Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete. Constr Build Mater 2018;163:668-80.

20. Xu H, Gong W, Syltebo L, Izzo K, Lutze W, Pegg IL. Effect of blast furnace slag grades on fly ash based geopolymer waste forms. Fuel 2014;133:332-40.

21. Kumar S, Kumar R, Mehrotra SP. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 2010;45:607-15.

22. Kumar S, Vasugi J, Ambily PS, Bharatkumar BH. Development and determination of mechanical properties of fly ash and slag blended geo polymer concrete. Int J Sci Eng Res 2013; doi: 10.4028/www.scientific.net/amr.651.168.

23. Nath P, Sarker PK. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 2014;66:163-71.

24. Lloyd RR, Provis JL, van Deventer JSJ. Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder. J Mater Sci 2009;44:620-31.

25. Temuujin J V, Van Riessen A, Williams R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J Hazard Mater 2009;167:82-8.

26. Yip CK, van Deventer JSJ. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci 2003;38:3851-60.

27. Yip CK, Lukey GC, Provis JL, van Deventer JSJ. Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 2008;38:554-64.

28. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem Concr Res 2011;41:923-31.

29. Khan MSH, Castel A, Akbarnezhad A, Foster SJ, Smith M. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete. Cem Concr Res 2016;89:220-9.

30. Phummiphan I, Horpibulsuk S, Rachan R, Arulrajah A, Shen SL, Chindaprasirt P. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J Hazard Mater 2018;341:257-67.

31. Xu J, Kang A, Wu Z, Xiao P, Gong Y. Effect of high-calcium basalt fiber on the workability, mechanical properties and microstructure of slag-fly ash geopolymer grouting material. Constr Build Mater 2021;302:124089.

32. Torres JJ, Palacios M, Hellouin M, Puertas F. . Alkaline chemical activation of urban glass wastes to produce cementituous materials. 1st Spanish Natl Conf Adv Mater Recycl Eco-Energy; 2009 Nov 12-13; Madrid, Spain. 2009. p.111-4.

33. Tian X, Rao F, León-Patiño CA, Song S. Co-disposal of MSWI fly ash and spent caustic through alkaline-activation consolidation. Cem Concr Compos 2021;116:103888.

34. Klinowski J. Nuclear magnetic resonance studies of zeolites. Prog Nucl Magn Reson Spectrosc 1984;16:237-309.

35. Tian X, Rao F, Morales-Estrella R, Song S. Effects of aluminum dosage on gel formation and heavy metal immobilization in alkali-activated municipal solid waste incineration fly ash. Energy & Fuels 2020;34:4727-33.

36. Singh PS, Bastow T, Trigg M. Structural studies of geopolymers by 29Si and 27Al MAS-NMR. J Mater Sci 2005;40:3951-61.

37. Engelhardt G, Michel D. High-resolution solid-state NMR of silicates and zeolites. Applied Catalysis 1987;42:187-8.

38. Tian X, Xu W, Song S, Rao F, Xia L. Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers. Chemosphere 2020;253:126754.

39. Li S, Peng XQ, Gou Q. Effect of mineral admixtures on frost resistance of geopolymers. Mater Rev 2018;32:1711-5.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/